

Klaudia Bałazy

NVIDIA | Jagiellonian University

Contributed Talk II:

Efficient Fine-Tuning of LLMs: Exploring PEFT Methods and LoRA-XS Insights

■ Friday / 8 November

 $15:00 - 15:25$

Lecture Hall A

About me & about the talk

LORA-XS: LOW-RANK ADAPTATION WITH EXTREMELY SMALL NUMBER OF PARAMETERS

Klaudia Bałazy^{*1}

Mohammadreza Banaei*²

Jacek Tabor¹

Karl Aberer²

¹Jagiellonian University, ²EPFL

*Equal contribution.

- 1. What is PEFT?
- 2. Why do we need it?
- 3. What are the PEFT approaches?
- 4. Our PEFT proposal: LoRA-XS

- 1. **What** is PEFT? **Parameter-Efficient Fine-Tuning**
- 2. Why do we need it?
- 3. What are the PEFT approaches?
- 4. Our PEFT proposal: LoRA-XS

- 1. What is PEFT? Parameter-Efficient Fine-Tuning
- 2. **Why** do we need it?
- 3. What are the PEFT approaches?
- 4. Our PEFT proposal: LoRA-XS

Trend depiction – approximate, not exact *Unverified Sources: [1],[2],[3],[4],[5],[6],[7],[8],[9]

Total Training Memory ≈

Model Weights

- + Activations
- + (Optimizer States + Gradients) * Number of Trainable Parameters

- 1. What is PEFT? Parameter-Efficient Fine-Tuning
- 2. Why do we need it?
- 3. What are the **PEFT approaches**?
- 4. Our PEFT proposal: LoRA-XS

PEFT methods

Comprehensive Learning -1-High Computational Cost \mathcal{C}^{max}

Sources: [10]

Reduced Training Cost 43 Inflexibility in Frozen Layers \sim

Additional Inference Overhead

Figure 2. Architecture of the adapter module and its integration with the Transformer. Left: We add the adapter module twice to each Transformer layer: after the projection following multiheaded attention and after the two feed-forward layers. Right: The adapter consists of a bottleneck which contains few parameters relative to the attention and feedforward layers in the original model. The adapter also contains a skip-connection. During adapter tuning, the green layers are trained on the downstream data, this includes the adapter, the layer normalization parameters, and the final classification layer (not shown in the figure).

Higher memory consumption compared to traditional fine-tuning

Performance Variability

1) "Translate the English sentence '{english_sentence}' into German: {german_translation}"

- 2) "English: '{english_sentence}' | German: {german_translation}" 3
- 3) "From English to German: '{english_sentence}' -> {german_translation}"

Hard Prompt Tuning

Sources:

 \overline{a}

Raschka, S. (2023, April 30). Understanding Parameter-Efficient LLM Finetuning: Prompt Tuning and Prefix Tuning. The Machine Learning Magazine. https://magazine.sebastianraschka.com/p/understanding-parameter-efficient

Lester, Brian, Rami Al-Rfou, and Noah Constant. "The power of scale for parameter-efficient prompt tuning." arXiv preprint arXiv:2104.08691 (2021).

Li, Xiang Lisa, and Percy Liang. "Prefix-tuning: Optimizing continuous prompts for generation." arXiv preprint arXiv:2101.00190 (2021).

```
1) "Translate the English sentence '{english_sentence}' into German: {german_translation}"
    2) "English: '{english_sentence}' | German: {german_translation}"
    3) "From English to German: '{english_sentence}' -> {german_translation}"
 5
    soft prompt = torch.nn. Parameter( # Make tensor trainable
         torch.rand(num tokens, embed dim)) # Initialize soft prompt tensor
 \overline{2}\overline{3}\overline{4}def input with soft prompt(x, soft prompt) :
                                                                                           Soft Prompt Tuningx = concatenate([soft_prompt, x], # Prepend soft prompt to input
 5
                            dim=seq len)
 6\phantom{1}6\overline{7}return x
 8
    # train soft prompt tensor via gradient descent
 9
    train(model(input_with_soft_prompt(x)))
10
11
12
    # use model with soft prompts
    model(input_with\_soft\_prompt(x))13
```
Hard Prompt Tuning

Sources:

Raschka, S. (2023, April 30). Understanding Parameter-Efficient LLM Finetuning: Prompt Tuning and Prefix Tuning. The Machine Learning Magazine. https://magazine.sebastianraschka.com/p/understanding-parameter-efficient

Lester, Brian, Rami Al-Rfou, and Noah Constant. "The power of scale for parameter-efficient prompt tuning." arXiv preprint arXiv:2104.08691 (2021). Li, Xiang Lisa, and Percy Liang. "Prefix-tuning: Optimizing continuous prompts for generation." arXiv preprint arXiv:2101.00190 (2021).

Sources:

Raschka, S. (2023, April 30). Understanding Parameter-Efficient LLM Finetuning: Prompt Tuning and Prefix Tuning. The Machine Learning Magazine. https://magazine.sebastianraschka.com/p/understanding-parameter-efficient

Lester, Brian, Rami Al-Rfou, and Noah Constant. "The power of scale for parameter-efficient prompt tuning." arXiv preprint arXiv:2104.08691 (2021). Li, Xiang Lisa, and Percy Liang. "Prefix-tuning: Optimizing continuous prompts for generation." arXiv preprint arXiv:2101.00190 (2021).

Sources:

Raschka, S. (2023, April 30). Understanding Parameter-Efficient LLM Finetuning: Prompt Tuning and Prefix Tuning. The Machine Learning Magazine. https://magazine.sebastianraschka.com/p/understanding-parameter-efficient

Lester, Brian, Rami Al-Rfou, and Noah Constant. "The power of scale for parameter-efficient prompt tuning." arXiv preprint arXiv:2104.08691 (2021). Li, Xiang Lisa, and Percy Liang. "Prefix-tuning: Optimizing continuous prompts for generation." arXiv preprint arXiv:2101.00190 (2021).

PEFT methods

Limited Flexibility

PEFT methods

Complexity in Implementation

Sources: Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685 (2021).

PEFT methods

PEFT methods

Sources: [3],[4],[10],[11],[12],[13],[14],[16],[17],[18],[19],[20],[21],[23]

- 1. What is PEFT? Parameter-Efficient Fine-Tuning
- 2. Why do we need it?
- 3. What are the PEFT approaches?
- 4. Our PEFT proposal: **LoRA-XS**

Sources: [3],[4],[10],[11],[12],[13],[14],[16],[17],[18],[19],[20],[21],[23],[24]

h = xW + xΔW = xW + xARB, where: W∈ℝ^ՠ×՞ , ∆W∈ℝ՟՞ ¤ ໊, R∈ℝ՟ ^{x r}, A∈ℝ՟ ¤ ՟, B∈ℝ՟ ^{x ո} and r << min(m,n). *SVD(W)* = $U\Sigma V^T$ and $A=U_r\Sigma_r$ and $B=V_r^T$ *T .*

LoRA-XS

1. **Fewer trainable parameters** + decoupling from the model dimension

LoRA-XS

- 1. Fewer trainable parameters + decoupling from the model dimension
- 2. **Strong results** on GLUE, GSM8k, MATH and eight commonsense reasoning benchmarks for RoBERTa-large, LLaMA2-7B, LLaMA3-8B, Mistral 7B and Gemma 7B.

Number of trainable parameters in millions (logarithmic scale)

Average performance of RoBERTa-large on a subset of GLUE tasks as a function of the number of trainable parameters (in millions) for different adaptation methods: Full Fine-Tuning (FT), LoRA, VERA, and LoRA-XS.

- 1. Fewer trainable parameters + decoupling from the model dimension
- 2. Strong results on GLUE, GSM8k, MATH and eight commonsense reasoning benchmarks for RoBERTa-large, LLaMA2-7B, LLaMA3-8B, Mistral 7B and Gemma 7B.
- 3. Theoretical derivation backed up by experimental results: **SVD-initialized LoRA-XS modules enhance convergence and performance,** especially when tasks align with pre-training objectives.

Performance of LoRA-XS with various initialization schemes. We present the best median scores across different learning rates, averaged over 5 seeds for rank 4. We report Matthew's correlation for CoLA and accuracy for the other tasks.

- 1. Fewer trainable parameters + decoupling from the model dimension
- 2. Strong results on GLUE, GSM8k, MATH and eight commonsense reasoning benchmarks for RoBERTa-large, LLaMA2-7B, LLaMA3-8B, Mistral 7B and Gemma 7B.
- 3. Theoretical derivation backed up by experimental results: SVD-initialized LoRA-XS modules enhance convergence and performance, especially when tasks align with pre-training objectives.

4. **Top singular vectors** in transformer weights **retain the most task-relevant knowledge.**

- 1. Fewer trainable parameters + decoupling from the model dimension
- 2. Strong results on GLUE, GSM8k, MATH and eight commonsense reasoning benchmarks for RoBERTa-large, LLaMA2-7B, LLaMA3-8B, Mistral 7B and Gemma 7B.
- 3. Theoretical derivation backed up by experimental results: SVD-initialized LoRA-XS modules enhance convergence and performance, especially when tasks align with pre-training objectives.
- 4. Top singular vectors in transformer weights retain the most task-relevant knowledge.
- 5. **Retaining the top singular vectors** consistently yields **better performance for LoRA-XS** across various tasks.

- 1. Fewer trainable parameters + decoupling from the model dimension
- 2. Strong results on GLUE, GSM8k, MATH and eight commonsense reasoning benchmarks for RoBERTa-large, LLaMA2-7B, LLaMA3-8B, Mistral 7B and Gemma 7B.
- 3. Theoretical derivation backed up by experimental results: SVD-initialized LoRA-XS modules enhance convergence and performance, especially when tasks align with pre-training objectives.
- 4. Top singular vectors in transformer weights retain the most task-relevant knowledge.
- 5. Retaining the top singular vectors consistently yields better performance for LoRA-XS across various tasks.
- 6. The results indicate improved performance when **top singular values Σ are included** in most cases.

h = xW + xΔW = xW + xARB $SVD(W) = U\Sigma V^T$ *A=U r Σ r and B=V r* $\frac{1}{\sqrt{r}}$ vs \bm{A} = $\bm{U}_{\bm{r}}$ and B = $V_{\bm{r}}^{\dagger}$ *T*

When to use LoRA-XS?

Extreme memory constraints (decoupling from the model dimension)

When to use LoRA-XS?

Need to store a huge number of personalized models

- 1. What is PEFT? Parameter-Efficient Fine-Tuning
- 2. Why do we need it?
- 3. What are the PEFT approaches?
- 4. Our PEFT proposal: LoRA-XS

Bibliography

[1] Peters, Matthew E. "Deep contextualized word representations." arXiv preprint arXiv:1802.05365 (2018).

[2] Fawad Ali (2023, April 11). GPT-1 to GPT-4: Each of OpenAI's GPT Models Explained and Compared. MakeUseOf.

<https://www.makeuseof.com/gpt-models-explained-and-compared/>(Access: 22 Oct 2024)

[3] Radford, Alec. "Improving language understanding by generative pre-training." (2018).

[4] Kenton, Jacob Devlin Ming-Wei Chang, and Lee Kristina Toutanova. "Bert: Pre-training of deep bidirectional transformers for language understanding." Proceedings of naacL-HLT. Vol. 1. 2019.

[5] Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAI blog 1.8 (2019): 9.

[6] Raffel, Colin, et al. "Exploring the limits of transfer learning with a unified text-to-text transformer." Journal of machine learning research 21.140 (2020): 1-67.

[7] Brown, Tom B. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020).

[8] Smith, Shaden, et al. "Using deepspeed and megatron to train megatron-turing nlg 530b, a large-scale generative language model." arXiv preprint arXiv:2201.11990 (2022).

[9] Driess, Danny, et al. "Palm-e: An embodied multimodal language model." arXiv preprint arXiv:2303.03378 (2023).

[10] Howard, Jeremy, and Sebastian Ruder. "Universal language model fine-tuning for text classification." arXiv preprint arXiv:1801.06146 (2018). [11] Houlsby, Neil, et al. "Parameter-efficient transfer learning for NLP." International conference on machine learning. PMLR, 2019.

[12] Guo, Demi, Alexander M. Rush, and Yoon Kim. "Parameter-efficient transfer learning with diff pruning." arXiv preprint arXiv:2012.07463 (2020). [13] Lester, Brian, Rami Al-Rfou, and Noah Constant. "The power of scale for parameter-efficient prompt tuning." arXiv preprint arXiv:2104.08691 (2021).

[14] Li, Xiang Lisa, and Percy Liang. "Prefix-tuning: Optimizing continuous prompts for generation." arXiv preprint arXiv:2101.00190 (2021).

[15] Raschka, S. (2023, April 30). Understanding Parameter-Efficient LLM Finetuning: Prompt Tuning and Prefix Tuning. The Machine Learning Magazine. https://magazine.sebastianraschka.com/p/understanding-parameter-efficient (Access: 22 Oct 2024).

Bibliography

[16] Zaken, Elad Ben, Shauli Ravfogel, and Yoav Goldberg. "Bitfit: Simple parameter-efficient fine-tuning for transformer-based masked language-models." arXiv preprint arXiv:2106.10199 (2021).

[17] Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685 (2021).

[18] HuggingFace, PEFT, <https://huggingface.co/docs/peft/>

[19] Kopiczko, Dawid J., Tijmen Blankevoort, and Yuki M. Asano. "Vera: Vector-based random matrix adaptation." arXiv preprint arXiv:2310.11454 (2023).

[20] Liu, Shih-Yang, et al. "Dora: Weight-decomposed low-rank adaptation." arXiv preprint arXiv:2402.09353 (2024).

[21] Zhang, Qingru, et al. "AdaLoRA: Adaptive budget allocation for parameter-efficient fine-tuning." arXiv preprint arXiv:2303.10512 (2023).

[22] Dettmers, Tim, et al. "Qlora: Efficient finetuning of quantized llms." Advances in Neural Information Processing Systems 36 (2024).

[23] Wu, Zhengxuan, et al. "Reft: Representation finetuning for language models." arXiv preprint arXiv:2404.03592 (2024).

[24] Bałazy, Klaudia, et al. "LoRA-XS: Low-Rank Adaptation with Extremely Small Number of Parameters." arXiv preprint arXiv:2405.17604 (2024)

[25]<https://github.com/hiyouga/LLaMA-Factory#hardware-requirement> (Access: 22 Oct 2024)

[26] Zhao, Jiawei, et al. "Galore: Memory-efficient llm training by gradient low-rank projection." arXiv preprint arXiv:2403.03507 (2024).

[27] Luo, Qijun, Hengxu Yu, and Xiao Li. "BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models." arXiv preprint arXiv:2404.02827 (2024).

Friday:

Session 2 / Lecture Hall B / 10:35

Deep learning for effective analysis of high content screening Adriana Borowa

Session 4 / Lecture Hall A / 14:30

Efficient fine-tuning of LLMs: exploring PEFT methods and LORA-XS insights Klaudia Bałazy

Session 5 / Lecture Hall B / 14:30

Current trends in intrinsically interpretable Deep Learning Dawid Rymarczyk

Neural rendering: the future of 3D modeling Przemysław Spurek

Check out our other talks during ML in PL!

earning research

Saturday:

Session 7 / Lecture Hall A / 12:00

AdaGlimpse: Active Visual Exploration with Arbitrary Glimpse Position and Scale Adam Pardyl

Session 8 / Lecture Hall B / 12:00

*Augmentation-aware Self-supervised Learning with Conditioned Projecto*r Marcin Przewięźlikowski

gmum.net