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Trend depiction – approximate, not exact
*Unverified
Sources: [1],[2],[3],[4],[5],[6],[7],[8],[9]



Total Training Memory ≈ 
Model Weights 
+ Activations 
+ (Optimizer States + Gradients) * Number of Trainable Parameters

* estimated
Source: https://github.com/hiyouga/LLaMA-Factory#hardware-requirement
References: [17],[22],[25],[26],[27]

Method Bits 7B 13B 30B 70B 110B 8x7B

Full AMP 120GB 240GB 600GB 1200GB 2000GB 900GB

Full 16 60GB 120GB 300GB 600GB 900GB 400GB

Freeze 16 20GB 40GB 80GB 200GB 360GB 160GB

LoRA/GaLore/BAdam 16 16GB 32GB 64GB 160GB 240GB 120GB

QLoRA 8 10GB 20GB 40GB 80GB 140GB 60GB

QLoRA 4 6GB 12GB 24GB 48GB 72GB 30GB

QLoRA 2 4GB 8GB 16GB 24GB 48GB 18GB

https://github.com/hiyouga/LLaMA-Factory#hardware-requirement
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PEFT methods

ULMFiT

2015

Sources: [10]

➕ Comprehensive Learning
➖ High Computational Cost

Full Fine-Tuning



PEFT methods

Sources: [3],[4],[10]

Full Fine-Tuning Transfer Learning

➕ Reduced Training Cost
➖ Inflexibility in Frozen Layers

BERT, GPT

2018

ULMFiT

2015



PEFT methods

Sources: [3],[4],[10],[11],[18]

Full Fine-Tuning Transfer Learning Parameter-Efficient Fine-Tuning (PEFT)

BERT, GPT

2018

Adapter Layers

2019

➕ Efficient Parameter Use
➖ Additional Inference Overhead

ULMFiT

2015



Sources: Houlsby, Neil, et al. "Parameter-efficient transfer learning for NLP." International conference on machine learning. PMLR, 2019.
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Sources: [3],[4],[10],[11],[12],[18]

Full Fine-Tuning Transfer Learning Parameter-Efficient Fine-Tuning (PEFT)

BERT, GPT

2018

Adapter Layers

2019

ULMFiT

2015

Diff Pruning

2020

➕ Efficient Multi Task Deployment (mobile applications)
➖ Higher memory consumption compared to traditional fine-tuning



PEFT methods

Sources: [3],[4],[10],[11],[12],[13],[14],[18]

Full Fine-Tuning Transfer Learning Parameter-Efficient Fine-Tuning (PEFT)

BERT, GPT

2018

Adapter Layers

2019

ULMFiT

2015

Diff Pruning

2020

Prompt Tuning
Prefix Tuning

2021

➕ Zero Training of Core Model
➖ Performance Variability



Sources: 
Raschka, S. (2023, April 30). Understanding Parameter-Efficient LLM Finetuning: Prompt Tuning and Prefix Tuning. The Machine Learning Magazine. 
https://magazine.sebastianraschka.com/p/understanding-parameter-efficient
Lester, Brian, Rami Al-Rfou, and Noah Constant. "The power of scale for parameter-efficient prompt tuning." arXiv preprint arXiv:2104.08691 (2021).
Li, Xiang Lisa, and Percy Liang. "Prefix-tuning: Optimizing continuous prompts for generation." arXiv preprint arXiv:2101.00190 (2021).
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Full Fine-Tuning Transfer Learning Parameter-Efficient Fine-Tuning (PEFT)

BERT, GPT

2018

Adapter Layers

2019

ULMFiT

2015

Diff Pruning

2020

Prompt Tuning
Prefix Tuning

BitFit

2021

➕ Simplicity and Efficiency
➖ Limited Flexibility

Sources: [3],[4],[10],[11],[12],[13],[14],[16],[18]



PEFT methods

Full Fine-Tuning Transfer Learning Parameter-Efficient Fine-Tuning (PEFT)

BERT, GPT

2018

Adapter Layers

2019

ULMFiT

2015

Diff Pruning

2020 2021

Sources: [3],[4],[10],[11],[12],[13],[14],[16],[17],[18]

Prompt Tuning
Prefix Tuning

BitFit
LoRA

➕ No Additional Inference Cost
➖ Complexity in Implementation



Sources: Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685 (2021).
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LoRA’s successors
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PEFT methods

Full Fine-Tuning Transfer Learning Parameter-Efficient Fine-Tuning (PEFT)
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Dora
VERA

AdaLoRA
QLoRA

LoRA-XS

LoRA’s successors



Traditional LoRA forward path for x∊ℝn:

h = xW + xΔW = xW + xAB, where: 

W∊ℝm x n, ΔW∊ℝm x n, A∊ℝm x r, B∊ℝr x n and r << min(m,n).



LoRA-XS forward path:
h = xW + xΔW = xW + xARB, where:

W∊ℝm x n, ΔW∊ℝm x n, R∊ℝr x r, A∊ℝm x r, B∊ℝr x n and r << min(m,n).
SVD(W) = UΣVT and A=UrΣr and B=Vr

T.



LoRA-XS

1. Fewer trainable parameters + 
decoupling from the model dimension



LoRA-XS

1. Fewer trainable parameters + decoupling 
from the model dimension

2. Strong results on GLUE, GSM8k, MATH 
and eight commonsense reasoning 
benchmarks for RoBERTa-large, 
LLaMA2-7B, LLaMA3-8B, Mistral 7B and 
Gemma 7B.

Average performance of RoBERTa-large on a subset of GLUE tasks as a function of the 
number of trainable parameters (in millions) for different adaptation methods:

 Full Fine-Tuning (FT), LoRA, VERA, and LoRA-XS.



LoRA-XS insights

1. Fewer trainable parameters + decoupling 
from the model dimension

2. Strong results on GLUE, GSM8k, MATH 
and eight commonsense reasoning 
benchmarks for RoBERTa-large, 
LLaMA2-7B, LLaMA3-8B, Mistral 7B and 
Gemma 7B.

3. Theoretical derivation backed up by 
experimental results: SVD-initialized 
LoRA-XS modules enhance 
convergence and performance, 
especially when tasks align with 
pre-training objectives.

Performance of LoRA-XS with various initialization schemes. We present the best median
scores across different learning rates, averaged over 5 seeds for rank 4. We report 

Matthew’s correlation for CoLA and accuracy for the other tasks. 
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experimental results: SVD-initialized 
LoRA-XS modules enhance convergence 
and performance, especially when tasks 
align with pre-training objectives.

4. Top singular vectors in transformer 
weights retain the most task-relevant 
knowledge.
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5. Retaining the top singular vectors 
consistently yields better performance 
for LoRA-XS across various tasks.



LoRA-XS insights

1. Fewer trainable parameters + decoupling 
from the model dimension

2. Strong results on GLUE, GSM8k, MATH 
and eight commonsense reasoning 
benchmarks for RoBERTa-large, 
LLaMA2-7B, LLaMA3-8B, Mistral 7B and 
Gemma 7B.

3. Theoretical derivation backed up by 
experimental results: SVD-initialized 
LoRA-XS modules enhance convergence 
and performance, especially when tasks 
align with pre-training objectives.

4. Top singular vectors in transformer 
weights retain the most task-relevant 
knowledge.

5. Retaining the top singular vectors 
consistently yields better performance for 
LoRA-XS across various tasks.

6. The results indicate improved performance 
when top singular values Σ are included 
in most cases.

h = xW + xΔW = xW + xARB
SVD(W) = UΣVT 

A=UrΣr and B=Vr
T vs A=Ur and B=Vr

T  



✅ Extreme memory constraints (decoupling from the model dimension)

When to use LoRA-XS?



When to use LoRA-XS?

✅ Need to store a huge number of personalized models
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Thank you! 😊
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