Warsaw University of Technology

PERSONAL SATION OF LARGE-SCALE **DFFUSONMODELS**

MLinPL 2024

Kamil Deja kamil.deja@pw.edu.pl

Mum, can we have

No. There are

MLinPL 2024

at Home.

at Home:

"A photo of Robert Lewandowski in a club jersey"

MLinPL 2024

Example – Why is it important?

"A photo of Robert Lewandowski in a club jersey"

Personalization of diffusion models Goal: Alter (update) the model's posterior distribution Research opportunities: Efficiency Precision Alignment

HOW:

MLinPL 2024

Combination of several personalizations

Fine-tuning, LoRA, inversion, weights selection, attention patching, model merging, continual learning...

- Searching for new "pseudo-words" in the embeddings space that
 - embedding, with DM few input samples

reconstruct input samples Direct optimization of the objective over the frozen text-to-image model and a

Gal, Rinon, et al. "An image is worth one word: Personalizing text-to-image generation using textual inversion." ICLR2023

Prompt adaptation (Textual Inversion)

Fine-tuning (DreamBooth)

- 1. Find tokens unused by the concept
 - with identifier
- and language drift

pretrained model, use them as an identifier for a new

Fine-tune the model with input images and prompt

Prior preservation loss to prevent reduced diversity

Ruiz, Nataniel, et al. "Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023.

Low Rank Adaptation

- Adaptation of the pretrained model's weights in low dimensional space
- Limited effect on the remaining of the model
- Efficient finetuning of low number of parameters
- Usually applied only to the attention layers

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685 (2021).

LORA++

• ZipLoRA – Combine independent LoRAs trained for styles and objects

Shah, Viraj, et al. "Ziplora: Any subject in any style by effectively merging loras." European Conference on Computer Vision. Springer, Cham, 2025.

C-LoRA – Continual merging of LoRAs trained for different objects

Smith, James Seale, et al. "Continual diffusion: Continual customization of text-to-image diffusion with c-lora." arXiv preprint arXiv:2304.06027 (2023).

STYLE AND OBJECT LOW-RANK CONT NUAL PERSONAL ZATION OF DIFFUSION MODELS

Katarzyna Zaleska*, Łukasz Staniszewski*, Kamil Deja

MLinPL 2024

"[V] dog in [S] style"

"[V] dog playing with a ball in [S] style"

Style Image "Flowers in [S] style"

"Sleeping [V dog in [S] style"

"[V] dog wearing a crown in [S] style"

Which parts of the model should we adapt?

- localized
- concepts/styles

lapted

ide

de

Knowledge in diffusion models is highly

• We can distinguish layers or their parts (mostly for attention layers) responsible for

Adapted

ng and editing knowledge in text-to-image generative models." ICLR 2023. hanistic Knowledge Localization in Text-to-Image Generative Models." ICML 2024

Which parts of the model should we adapt?

Custom Diffusion – Finetuning of selected cross-attention layers to introduce new concepts

Kumari, Nupur, et al. "Multi-concept customization of text-to-image diffusion." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.

Cones – identification of a collection of neurons responsible for generation of a single concept Liu, Zhiheng, et al. "Cones: Concept neurons in diffusion models for customized generation." arXiv preprint arXiv:2303.05125 (2023).

READY, AIM, EDIT! © PRECISE PARAMETER LOCALIZATION FOR TEXT EDITING WITH DIFFUSION MODELS Łukasz Staniszewski*, Bartosz Cywiński*, Franziska Boenisch, Kamil Deja, Adam Dziedzic

MLinPL 2024

Person + Attribute

V* **dog** wearing sunglasses in front of a moongate

Multi-concept composition

Person + Attribute + Background

Warsaw University of Technology

MLinPL 2024

Unlearning

"A photo of a pizza with pineapple"

MLinPL 2024

Why do we care? – Harmful content!

Unlearning

"A photo of a pizza with pineapple"

> **Fixed SDXL** (After Unlearning)

Fine-tuning-based unlearning

- guidance
- surrogate distribution forgetting in deep generative models." NeurIPS 2023
- layer weights
- objective.

Fan, Chongyu, et al. "Salun: Empowering machine unlearning via gradient-based weight saliency in both image classification and generation." ICLR2024

MLinPL 2024

• Erasing Concepts – unlearning in classifier-free

Gandikota, Rohit, et al. "Erasing concepts from diffusion models." ICCV 2023

• Selective Amnesia – unlearning by substituting with

Heng, Alvin, and Harold Soh. "Selective amnesia: A continual learning approach to

Concept Editing – unlearning of the cross-attention

Gandikota, Rohit, et al. "Unified concept editing in diffusion models." WACV 2024.

• SalUn – Unlearning of the influential weights selected through weight saliency wrt. Unlearning

"A photo of a pizza with a pineapple"

Unlearning- challenges

- Unlearning vs Forgetting
- How to measure unlearning performance?
- Are we sure that model will be able to generate unlearned content? Zhang, Yimeng, et al. "To generate or not? safety-driven unlearned diffusion models

cheetah?

MLinPL 2024

are still events generate unsafe images... for now." ECCV 2024.

should be the scope of our user rning? earning leopard should we also forget

ODS ON

z Trzciński

<u>Style</u> Unlearning

over the rhône by vincent van gogh

gmt patents R the starry night over the rhône by vincent van gogh

<u>Object</u> <u>Unlearning</u>

desert landscape.

wrinkles staining modest Parachute in a desert landscape.

Questions?

GUIDE: GUIDANCE-BASED NCREMENTAL LEARNING WITH DIFFUSION MODELS

Bartosz Cywiński, Kamil Deja, Tomasz Trzciński, Bartłomiej Twardowski, Łukasz Kuciński

STYLE AND OBJECT LOW-RANK CONTINUAL PERSONAL ZATION OF DFFUSONMODELS

Katarzyna Zaleska*, Łukasz Staniszewski*, Kamil Deja

UNREVEALING HIDDEN RELATIONS BETWEEN LATENT SPACE AND MAGE GENERATIONS IN DIFFUSION MODELS

Łukasz Staniszewski, Kamil Deja, Łukasz Kuciński

ASSESSING THE MPACT OF UNLEARNING METHODS ON TEXT-TO- MAGE DFFUSION MODELS

Valeriya Khan, Kamil Deja, Bartłomiej Twardowski, Tomasz Trzciński

JOINT DIFFUSION MODELS IN CONTINUAL LEARNING

Paweł Skierś, Kamil Deja

READY, AIM, EDIT! OF PRECISE PARAMETER LOCALIZATION FOR TEXT EDITING WITH DIFFUSION MODELS

Łukasz Staniszewski*, Bartosz Cywiński*, Franziska Boenisch, Kamil Deja, Adam Dziedzic

MLinPL 2024

Diffusion models papers reading club starting soon! Please check:

Website

LinkedIn

Kamil.deja@pw.edu.pl

Orthogonal fine-tuning

- Fine-tuning can lead to fine for and destruction of the properties of the base mo
- Learn layer-specific neuro orthogonal transformations
- OFT preserves hypersperical energy which characterizes pairwise relation between neurons

Qiu, Zeju, et al. "Controlling text-to-image diffusion by orthogonal finetuning." Advances in Neural Information Processing Systems 36 (2023): 79320-79362.

Text prompt: a [V] dog with a mountain in the background

Iteration 400

Iteration 1400

Iteration 2200

Iteration 3000

MLinPL 2024

Bonus - Weigths2Weights

• Train 60 000 LoRAs of individual visual identities of celebrities • Cast adapter weights to *w2w* space with dimensionality reduction

• Create new identities, or edit the existing ones in low-dimensional space

