PR JAGIELLONIAN
V4l UNIVERSITY
@Y IN KRAKOW

group of machine

learning research

Neural rendering

przemyslaw.spurek@uj.edu.pl



group of machine

Neural Rendering gmuim

learning research

Our goal is to create 3D object

by using only 2D images.
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A neural radiance field (NeRF) is a fully-connected neural network that can generate novel views of
complex 3D scenes, based on a partial set of 2D images.

It is trained to use a rendering loss to reproduce input views of a scene. It works by taking input images
representing a scene and interpolating between them to render one complete scene.

NeRF is a highly effective way to generate images for synthetic data.
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Mildenhall, Ben, et al. "Nerf: Representing scenes as neural radiance fields for view synthesis." Communications of the ACM 65.1 (2021): 11
99-106.


https://www.matthewtancik.com/nerf
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Mildenhall, Ben, et al. "Nerf: Representing scenes as neural radiance fields for view synthesis." Communications of the ACM 65.1 (2021): 12
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https://www.matthewtancik.com/nerf
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In comparison, Gaussian Splatting (GS) provides
a similar quality of renders with more rapid
training and inference. This is a consequence of
GS not requiring neural networks. Instead, we
encode information about the 3D objects in a set
of Gaussian distributions.

These Gaussians can then be used in a similar
manner to classical meshes. Consequently, GS
can be swiftly developed when needed to, for
example, model dynamic scenes. Unfortunately,
GS is hard to condition as it necessitates a
hundred thousand Gaussian components.
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https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
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https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

GalMeS: Mesh-Based Adapting and Modification
of Gaussian Splatting

We introduce the Gaussian Mesh
Splatting (GaMeS) model, which
allows modification of Gaussian
components in a similar way as

meshes.
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GalMeS: Mesh-Based Adapting and Modification
of Gaussian Splatting

Scenario I: A Model with an Existing Mesh

Modification due to mesh changing
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Scenario Ill: A Model without a Mesh
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D-MiSo: Editing Dynamic 3D Scenes using gmum
Multi-Gaussians Soup

We we propose Dynamic
Multi-Gaussian Soup (D-MiSo), which
allows us to model the mesh-inspired

representation of dynamic GS.
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D-MiSo: Editing Dynamic 3D Scenes using gmum
Multi-Gaussians Soup
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D-MiSo: Editing Dynamic 3D Scenes using
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GASP: Gaussian Splatting for Physic-Based
Simulations

Our Gaussian Splatting for
Physics-Based Simulations (GASP)
model uses a physical engine (without
any modifications) and flat Gaussian
distributions, which are parameterized
by three points (mesh faces).
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Gaussian Splatting for Physic-Based
Simulations




GASP: Gaussian Splatting for Physic-Based
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GASP: Gaussian Splatting for Physic-Based
Simulations
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MiraGe improves the rendering quality
and allows realistic image
modifications, including the

human-inspired perception of photos
in the 3D world.
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Gaussian Splatting projects
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GaMeS in VR

Our goal is to add GaMeS to VR/AR.
https://yingjiang96.github.io/VR-GS/

Object-level 3D Scene Reconstruction GS Embedded Geometry Reconstruction VR-GS Simulation and Rendering
Real Scene Mesh
Capture Reconstruction

VDB Reconstruction

Tet Generation

3D Gaussian

> Two-level
Splatting Embedding Dynamics and Illuminations
il Extended Position-based Dynamics
Collision Handling
Global Embedding

Gaussian Rasterizer with Shadow Ray
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https://yingjiang96.github.io/VR-GS/

INR based GS

Our goal is to encode Gaussian Splatting in Neural Network weights.

https://theialab.qithub.io/laghashes/
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https://theialab.github.io/laghashes/

Merging Gaussian Splatting objects

Our goal is to correctly merge Gaussian Splatting based objects.

https://waczjoan.github.io/GASP/
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GS for medical Images

Our goal is to represent spectral images by Gaussian Splatting.

https://arxiv.org/pdf/2202.01020.pdf
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https://arxiv.org/pdf/2202.01020.pdf

Friday:
Session 2 [ Lecture Hall B / 10:35

Deep learning for effective analysis
of high content screening
Adriana Borowa

Session 4 [ Lecture Hall A [ 14:30

Efficient fine-tuning of LLMs: exploring
PEFT methods and LORA-XS insights
Klaudia Batazy

Session 5 [ Lecture Hall B / 14:30

Current trends in intrinsically
interpretable Deep Learning
Dawid Rymarczyk

Neural rendering: the future of 3D
modeling
Przemystaw Spurek

Check out
our other talks Saturday:
during ML in PL!

Session 7 [ Lecture Hall A [ 12:00

AdaGlimpse: Active Visual Exploration
with Arbitrary Glimpse Position and Scale
Adam Pardyl

JAGIELLONIAN Session 8 [ Lecture Hall B / 12:00
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Augmentation-aware Self-supervised Learning
with Conditioned Projector
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