Finding NeMo: Localizing Memorizing Neurons in Diffusion Models

Franziska Boenisch ML in PL, November 9th, 2024

SprintML

Diffusion models create detailed images

Diffusion models regenerate training data!

Training Set

Caption: Living in the light with Ann Graham Lotz

Generated Image

Prompt: Ann Graham Lotz

[Carlini et al., 2023] ₃

Existing defenses are costly or reversible

[Wen et al., 2024; Ren et al., 2024]

NeMo: Localize memorizing neurons

Outlier activation for a single image

Dominik Hintersdorf, Lukas Struppek, Kristian Kersting, Adam Dziedzic, and <u>Franziska</u> <u>Boenisch</u>. *"Finding NeMo: Localizing Neurons Responsible For Memorization in Diffusion Models."* In **NeurIPS'24**

DMs generate images from noise

DM Training: Predict added noise

Backpropagate loss:

DM Generation: Remove predicted noise Added

"A cat in the forest" Prompt

8

Detecting memorization efficiently

Different denoising trajectories!

[Wen et al., 2024] g

Different denoising trajectories

Memorized Prompts Non-Memorized Prompts Final Generation Image: Contract of the second se

Comparison of initial noise predictions with different seeds

Quantifying memorization

Structural Similarity Index Measure (SSIM) between noise differences from different seeds

[SSIM: Zhou et al., 2004]

SSIM score detects memorization

Attributing memorization to neurons

Efficiently localizing memorization

Candidate Neurons

Step 1: Coarse grained candidate neuron selection

 $\theta_{act} > 4.75$ & top k+1 neurons Step 2: Refinement of the candidate set

Layer by layer Neuron by neuron in remaining layers

NeMo identifies and mitigates memorization while maintaining utility

Only a few neurons are responsible for memorizing data points

Number of neurons deactivated

Only a few neurons are responsible for memorizing data points

Some neurons memorize multiple points

No Blocked Neurons

Blocked Neuron #25

"Watch: Passion Pit's New Video, ""Lifted Up (1985)"""

Aretha Franklin Files \$10 Million Suit Over Patti LaBelle Fight Story On Satire Website

Rambo 5 und Rocky Spin-Off - Sylvester Stallone gibt Updates

Deactivating neurons does not significantly impact the quality of

Conclusion

NeMo allows to localize memorized data in individual neurons. By deactivating these neurons, we can miti-

gate memorization.

Thank you!

Deactivating neurons in attention layers

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d}}\right) \cdot V$$

Q: **Query** I No direct input from text guidance

K: **Keys** Directly process text embeddings, but do not operate separately

V: **Values** Directly process text embeddings and no dependence between neurons

Deactivating neurons in other layers in the U-Net is possible but degrades

Deactivating in convolutional layers does not reduce memorization

Initial candidate selection

Algorithm 3 Initial Neuron Selection

Input:

Prompt embedding y> Text prompt embeddingMemorization threshold (SSIM) τ_{mem} > Target memorization scoreMinimum activation threshold θ_{min} > Threshold for stopping neuron search

Output: Set of neuron candidates S_{initial} , refinement memorization threshold $\tau_{\text{mem_ref}}$

Candidate set of memorization neuro Memorization threshold (SSIM) $\tau_{\rm mem}$	$ \begin{array}{ccc} \text{ns } S_{\text{initial}} & \triangleright \text{ Initial memorizing neuron set} \\ \text{$$_{\text{uref}}$} & \triangleright \text{Memorization threshold for refinement} \end{array} $
$\text{mem} \leftarrow 1.0$	Initialize memorization score as maximum
$\theta_{\rm act} \leftarrow 5$	Initialize threshold of OOD activation detection
$k \leftarrow 0$	\triangleright Initialize k for top-k activation detection
$\tau \epsilon \leftarrow \tau$	Set refinement memorization threshold to current threshold

 $\tau_{\text{mem_ref}} \leftarrow \tau_{\text{mem}}$ > Set refinement memorization threshold to current threshold $\Delta_{\text{unblocked}} \leftarrow \text{get_noise_diff}(y, \emptyset)$ > Noise differences with all neurons active

// Increase set of candidate neurons until target memorization score is reached

while mem $> au_{ m mem}$ do	While memorization score above threshold
$S_{\text{initial}} \leftarrow \text{get_ood_neurons}(y, \theta_{\text{act}}, k)$	Detect neurons with OOD activations
$\Delta_{\text{blocked}} \leftarrow \text{get_noise_diff}(y, S_{\text{initial}})$	▷ Compute noise differences
$mem \leftarrow compute_memorization(\Delta_{unblocke}$	$(\Delta_{blocked}) \triangleright Compute memorization score (SSIM)$
$ \begin{array}{l} \text{if } \theta_{\mathrm{act}} < \theta_{\mathrm{min}} \text{ then} \\ \tau_{\mathrm{mem_ref}} \leftarrow \mathrm{mem} \qquad \triangleright \operatorname{Set} \\ \mathbf{break} \\ \text{end if} \end{array} $	 Minimum activation threshold not reached refinement threshold to current memorization score Stop if activation threshold is too low
// Adjust OOD detection parameters to inc $\theta_{act} \leftarrow \theta_{act} - 0.25$ $k \leftarrow k + 1$	crease set of candidate neurons > Decrease threshold for OOD detection > Increase k for top-k activation detection

end while

return $S_{\text{initial}}, \tau_{\text{mem ref}}$ > Return neuron candidates and refinement memorization threshold

Candidate refinement

Algorithm 4 Neuron Selection Refinement	
Input:	
Initial memorization neuron candidate set S_{initial} Memorization threshold (SSIM) $\tau_{\text{mem_ref}}$	▷ Given neuron candidate set ▷ Refinement memorization score threhsold
Output: memorization neurons S_{refined}	▷ Refined set of memorization neurons
$\begin{array}{l} S_{\text{refined}} \leftarrow S_{\text{initial}} \\ \Delta_{\text{unblocked}} \leftarrow \text{get_noise_diff}(y, \emptyset) \end{array}$	▷ Noise differences with all neurons active
$ \begin{array}{l} \textit{ // Check all candidate neurons of individual laye} \\ \textbf{for } l \in \{1, \ldots, L\} \ \textbf{do} \qquad \qquad \triangleright \ \textbf{Ii} \\ S_{layer} \leftarrow \texttt{get_neurons_in_layer}(S_{refined}, l) \\ S_{neurons} \leftarrow S_{refined} \setminus S_{layer} \\ \Delta_{blocked} \leftarrow \texttt{get_noise_diff}(y, S_{neurons}) \\ \texttt{mem} \leftarrow \texttt{compute_memorization}(\Delta_{unblocked}, \end{array} $	ers at once for memorization terate over all layers to remove low impact layers ▷ Get the neurons in the current layer <i>l</i> ▷ Compute set of neurons from remaining layers ▷ Compute noise differences Δ _{blocked}) ▷ Compute memorization score (SSIM)
$\begin{array}{l} \text{if mem} < \tau_{\text{mem,ref}} \text{ then} \\ S_{\text{refined}} \leftarrow S_{\text{refined}} \setminus S_{\text{layer}} \\ \text{end if} \\ \text{end for} \end{array}$	 Minimum memorization threshold not reached Remove neurons of layer <i>l</i> from neuron set
	<i>dually</i> ▷ Iterate over each remaining layer ▷ Get the neurons in the current layer <i>l</i>
$\begin{array}{l} \text{for } n \in S_{\text{layer}} \text{do} \\ S_{\text{neurons}} \leftarrow S_{\text{refined}} \setminus \{n\} \\ \Delta_{\text{blocked}} \leftarrow \text{get_noise_diff}(y, S_{\text{neurons}}) \\ \text{mem} \leftarrow \text{compute_memorization}(\Delta_{\text{unbloc}}) \end{array}$	$\triangleright \text{ Compute set of neurons without neuron } n$ $\triangleright \text{ Compute noise differences}$ $\triangleright \text{ Compute mem. score (SSIM)}$
$\begin{array}{l} \textbf{if mem} < \tau_{\text{mem_ref}} \textbf{ then} \\ S_{\text{refined}} \leftarrow S_{\text{refined}} \setminus \{n\} \\ \textbf{end if} \end{array}$	Minimum memorization threshold not reached > Remove current neuron from set
end for end for	
return S _{refined}	▷ Return refined set of memorization neurons