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Outline

What are the obstacles to scale up RL?
Obstacle 1.

— our solution for speeding up and scaling up GCRL.
Obstacle 2 and our results.
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Scaling up RL

Two main obstacles to scaling up RL:

e Need for massive amounts of data.
o We use relatively small datasets of ~10°

transitions.

e Stable algorithms and architectures that

utilize that data.

You need to have a theoretical guarantee of
convergence of Bellman equation and
number of lemmas, to prove that adding data
leads to ...

Just get ; Just get
more data 34% more data

o Data is not enough. We need proper algorithms.



Obstacle 1 - The data problem

. Time lost on transferring data

between GPU and CPU.

. Small GPU utilisation.

Training takes ~ 4-8 hours
for DMC environments.
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Source: Jakob Foerster ICML 2024 talk -

Reinforcement Learning at the Hyperscale

) % \ &8
? > \\ 53
';,i Co ‘:’Q,: \
& ‘-/Q @. | . \\
_observation _~~_ _



https://slideslive.com/39022179/reinforcement-learning-at-the-hyperscale
https://slideslive.com/39022179/reinforcement-learning-at-the-hyperscale

The solution

e Use JAX vectorize environments
e Run everything on GPU
e JIT compile training loop.

Source: Jakob Foerster ICML 2024 talk -
Reinforcement Learning at the Hyperscale
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Accelerating Goal-Conditioned RL Algorithms and Research

— benchmark + codebase

e 10+ GPU-accelerated BRAX/MJX environments.

e Fully JIT-compiled training.
o ant training 10M steps < 10 min

e Easy to modify and extend. i

Open-source:
GPU-accelerated sim:

Brax, MuJoCo MJX
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Training speedup in JaxGCRL
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> 20 times faster training! j

Takeaway:

Training, data collection, and replay buffer are all run on a single GPU device.

How?
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What exactly does JaxGCRL enable?

e You can work with RL projects, like data science
projects, with a quick feedback loop.

e Anyone with access to a single GPU can
contribute to SOTA GCRL research.

e You can have a working policy
like this one in ~10 minutes. — )
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Obstacle 2 — algorithms and architectures
that scale



Obstacle 2 - algorithms and architectures

e We use relatively small model
architectures.

e The performance saturates 0.9
quickly with model size.

BRO Performance
(Nauman et al., NeurlPS 2024 Spotlight)
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Goal-Conditioned Reinforcement Learning

e The objective is to reach the goal state.
e The goal can be defined as a subset of

state space, i.e., just x and y coordinates.
e Often used in sparse reward settings.

Reward =0

goal

agent

O

Reward = 1

®

The policy is conditioned
on both state and goal:

m(a | s,9)




Contrastive Learning as Goal-Conditioned RL
(Eysenbach et al., NeurlPS 2022)

Objective: Discriminate future states from random states.
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Why it works?

Meaningful environment dynamics representations
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Source: Eysenbach et al., 2022



JaxGCRL Benchmark results
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e Contrastive RL learns non-trivial policy in every environment.



What if we scale the number of env steps?

Currently, CRL does not scale effectively

with large amounts of data.
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How important are energy and contrastive functions?

e Different contrastive energy functions and contrastive
objectives based on InfoNCE (and DPO) perform on-pair.

Where is the bottleneck, then?
Contrastive objectives

Energy functions



|s architecture scale a bottleneck?

e Architecture size helps but needs to e Layer Normalization is helping in
be scaled up correctly. large architectures.
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Takeaways

e Obstacles: Data and Algorithms/Architectures.
e JaxGCRL addresses Obstacle 1 and speeds up research on Obstacle 2.

e Experiments with 10M steps can be completed in minutes, while those with billions
of environment steps can be done in a few hours.

e “We are experiencing another seismic shift in (RL) field” — Jakob Foerster 2024



Thank you!

michalbortkiewicz8@gmail.com, wladek.palucki@gmail.com

github.com/MichalBortkiewicz/JaxGCRL -'|: ?
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