

Image source: Wikipedia

Reinforcement Learning

What is Reinforcement Learning?

- A subset of AI algorithms (like Machine Learning or Deep Learning)
- Learning what action to take in order to maximize a reward metric (mapping situations to actions)
- Unique characteristics
	- Closed-loop (current actions influence later inputs)
	- No direct instructions (no training dataset)
	- If the consequences of actions can be longer-term (the result is not to be observed immediately)
- Most common issue that needs to be solved: balancing **exploration** (acquiring new information) and **exploitation** (using the current knowledge to maximize the reward)

Policies in Reinforcement Learning

- \blacksquare A policy π is a mapping from states to actions
- This policy can be either deterministic or stochastic
- Reinforcement learning algorithms can be on-policy and off-policy
- **On-policy**: the agent is learning the policy that if follows
- **Off-policy**: the agent collects data using one policy (the behavior policy) but learns about the optimal policy (target policy)
- Bandits with good exploration rates model stochastic policies

Multi-armed bandits

- A common reinforcement learning problem
- A player has to repeatedly choose between a finite set of actions; each action provides a random reward from a specific distribution to that action
- If The final objective is to maximize the total reward obtained after a number of rounds

How is this problem helpful?

- Healthcare: finding the best treatment while minimizing the side effects
- Finance: maximizing the yield of a portfolio by allocating funds to a finite set of instruments
- **Digital marketing: maximizing sales/clicks/views in an A/B test** *our study case*

What is A/B testing?

- A/B testing platform, where traffic is normally allocated between treatments with percentages defined by the client
- Adding multi-armed bandits and transitioning the manual allocation to a dynamic, automatic version
- Maximizing conversions in an A/B/C test with the following conversions: 6%, 2% and 4.5%
- The bandits can be considered Bernoulli because actions have only a Yes/No outcome (or "coin-tosses")

Non-functional requirements for these services

- Millisecond response time (slow policy evaluation will result in a slower user experience)
- Online policy evaluation requires a fast reporting engine
- For websites with a lot of traffic, a Big Data processing pipeline might prove to be necessary

Algorithms used

- **Thompson Sampling**
- **Upper Confidence Bound**
- **Probably Approximately Correct**
- **LilUCB**

Thompson Sampling

- Beta-Bernoulli bandit
- \blacksquare Beta distribution used to model coin tosses Beta(#heads, #tails)
- During each iteration, all arms gets a score sampled from its Beta distribution (using number of conversions and number of no-conversions). The arm with the maximum score is then used
- Exploring the possible option and gradually exploiting the accumulated information

Thompson Sampling Winner Allocation

Probably Approximately Correct

- This approach uses always-valid confidence bounds
- Great for choosing more than one winning option

Probably Approximately Correct Winner Allocation

- The better "brother" of Upper Confidence Bound
- Using the Law of Iterated Logarithm (Lil) to optimize the number of attempts to get to the

100

90

 $\epsilon, \alpha, \beta > 0$ parameters

A Adobe

rate

Results Overview

© 2024 Adobe. All Rights Reserved. Adobe Confidential.

A Adobe

Conclusions

- Even though currently not popular, a great way to **optimize** decision-making across various sectors using AI and Reinforcement Learning
- A lot of initiatives and research literature on the subject: contextual bandits, collaborative bandit etc.
- The code: <https://github.com/tudorcoman/multi-armed-bandits/>

More reading on the algorithms…

- Peter Auer, Nicolo Cesa-Bianchi and Paul Fischer, "Finite-time Analysis of the Multiarmed Bandit Problem", in Machine Learning 47 (2002), pp. 235–256, doi: 10. 1023/A:1013689704352
- Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer and Peter Stone, "PAC Subset Selection in Stochastic Multi-armed Bandits", in ICML'12: Proceedings of the 29th International Conference on Machine Learning, Edinburgh, Scotland: Omnipress, 2012, isbn: 9781450312851
- Kevin Jamieson, Matthew Malloy, Robert Nowak and Sébastien Bubeck, "lil' UCB : An Optimal Exploration Algorithm for Multi-Armed Bandits", 2013, doi: 10.48550/ arXiv.1312.7308

Let's connect!

- LinkedIn: <https://linkedin.com/in/tcoman/>
- GitHub: <https://github.com/tudorcoman/>

 \mathbf{v} **AV** A \blacktriangle \blacktriangle \blacktriangle Δ \blacktriangle A \blacktriangle Δ A A Δ \blacktriangle \blacktriangle А \blacktriangle Δ A \blacktriangle Δ A \blacktriangle A A A \blacktriangle A \blacktriangle A A A A \blacktriangle Δ \blacktriangle \blacktriangle A A \blacktriangle A \blacktriangle A A \blacktriangle A \blacktriangle A A A Δ Δ \blacktriangle \blacktriangle A $\pmb{\Lambda}$ \blacktriangle A A $\pmb{\Lambda}$ \blacktriangle Δ A A \blacktriangle Ā $\pmb{\Lambda}$ \blacktriangle \blacktriangle $\pmb{\Lambda}$ A A Δ \blacktriangle Δ A \blacktriangle Δ Δ Δ \blacktriangle \blacktriangle A \blacktriangle Δ Δ Δ \blacktriangle \blacktriangle \blacktriangle Δ \blacktriangle Δ \blacktriangle \blacktriangle \blacktriangle Δ Δ A Δ A \blacktriangle Δ \blacktriangle \blacktriangle A Δ A \blacktriangle Δ A \blacktriangle A Δ \blacktriangle \blacktriangle \blacktriangle \blacktriangle \blacktriangle \blacktriangle \blacktriangle \blacktriangle \blacksquare

