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Reinforcement Learning



What is Reinforcement Learning?

- A subset of Al algorithms (like Machine Learning or Deep Learning)

- Learning what action to take in order to maximize a reward metric (mapping situations to
actions)

- Unique characteristics
. Closed-loop (current actions influence later inputs)
- No direct instructions (no training dataset)

- The consequences of actions can be longer-term (the result is not to be observed immediately)

- Most common issue that needs to be solved: balancing exploration (acquiring new
information) and exploitation (using the current knowledge to maximize the reward)
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Policies in Reinforcement Learning

- A policy 1T is a mapping from states to actions

- This policy can be either deterministic or stochastic

- Reinforcement learning algorithms can be on-policy and off-policy
« On-policy: the agent is learning the policy that if follows

- Off-policy: the agent collects data using one policy (the behavior policy) but learns
about the optimal policy (target policy)

- Bandits with good exploration rates model stochastic policies
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Multi-armed bandits

- A common reinforcement learning problem

- A player has to repeatedly choose between a finite set of actions; each action provides
a random reward from a specific distribution to that action

- The final objective is to maximize the total reward obtained after a number of rounds
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How is this problem helpful?

- Healthcare: finding the best treatment while minimizing the side effects

- Finance: maximizing the yield of a portfolio by allocating funds to a finite set of
instruments

- Digital marketing: maximizing sales/clicks/views in an A/B test — our study case
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What is A/B testing?
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Our setup

- A/B testing platform, where traffic is normally allocated between treatments with
percentages defined by the client

- Adding multi-armed bandits and transitioning the manual allocation to a dynamic,
automatic version

- Maximizing conversions in an A/B/C test with the following conversions: 6%, 2% and
4.5%

- The bandits can be considered Bernoulli because actions have only a Yes/No outcome
(or “coin-tosses”)
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Non-functional requirements for these services

- Millisecond response time (slow policy evaluation will result in a slower user experience)
- Online policy evaluation requires a fast reporting engine

- For websites with a lot of traffic, a Big Data processing pipeline might prove to be
necessary
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Algorithms used

Thompson Sampling
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Thompson Sampling
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- Beta-Bernoulli bandit
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Probably Approximately Correct

- This approach uses always-valid confidence
bounds

- Great for choosing more than one winning
option

Arm conversion

varianc
2(np? +1) np? +1
CS, . := S0P L e | ME T2
1—c ?xk + 0k¢ n2p2 og o

~

) Arm
grtrg conversion nymber of Uncertainty
vViews factor
Finetuning
parameter

h‘ Adobe

100 A

90 A

Percentage of allocation te winner

30 A

80

70 A

60

50 A

40 1

0

500

1000

1500 2000
Test number

2500 3000 3500 4000

Probably Approximately Correct Winner Allocation

© 2024 Adobe. All Rights Reserved. Adobe
Confidential.



LilUCB
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Results Overview
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Conclusions

- Even though currently not popular, a great way to optimize decision-making across
various sectors using Al and Reinforcement Learning

- Alot of initiatives and research literature on the subject: contextual bandits, collaborative
bandit etc.

- The code: https://github.com/tudorcoman/multi-armed-bandits/
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More reading on the algorithms...

- Peter Auer, Nicolo Cesa-Bianchi and Paul Fischer, “Finite-time Analysis of the Multiarmed Bandit Problem”,
in Machine Learning 47 (2002), pp. 235-256, doi: 10. 1023/A:1013689704352

- Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer and Peter Stone, “PAC Subset Selection in
Stochastic Multi-armed Bandits”, in ICML'12: Proceedings of the 29th International Conference on Machine
Learning, Edinburgh, Scotland: Omnipress, 2012, isbn: 9781450312851

- Kevin Jamieson, Matthew Malloy, Robert Nowak and Sébastien Bubeck, “li’ UCB : An Optimal Exploration
Algorithm for Multi-Armed Bandits”, 2013, doi: 10.48550/ arXiv.1312.7308

J4\ Adobe © 2024 Adobe. All Rights Reserved. Adobe
Confidential



Let’'s connect!

- LinkedIn: https://linkedin.com/in/tcoman/

- GitHub: https://qgithub.com/tudorcoman/
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