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Motivation - fine-tuning for RL
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Offline training scales very well!



Problems with offline pre-training in RL

e Upper-bounded by the data-generating expert.
o There are methods for improving but they only go so far.
e We never have enough data.
e We never clone perfectly and small errors accumulate.
o  We might quickly go out-of-distribution.
e Offline methods might misunderstand how their actions impact the

environment.

Our proposed solution: online RL fine-tuning



Testbed: RoboticSequence

e Therobot has to perform four tasks
in asingle episode:
o Hammerin anail
o Push an object
o Unplugapeg
o Push an object around a wall

e Episode ends if we do not succeed




Fine-tuning scenario

Performance on RoboticSequence
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What happened?

1.0 Performance on Hammer 116 Performance on Push
o 0.8 ’ v 0.8
© ©
o 0.6 o 0.6
0w 0w
(7] 7]
) . . vo4 vo4
(] [}
e |et'szoominon particular S0 £
tasks. - | I 1 R
0 2 4 0 2 4
e The model forgets the #Steps  1e6 #Steps  1e6
pre-trained knowledge! |Performance on Peg Unplug Side - Performance on Push Wall
v 0.8 v 0.8
© ©
o 0.6 o 0.6
i m
g 0.4 g 0.4
o= | =}
n 0.2 wn 0.2
0.0 - 0.0
0 2 4 0 2 4
# Steps le6 # Steps le6

—— From Scratch ===+ Pre-training —— Fine-tuning



Why does this happen?

e Let'sdivide the statesin our environment into two sets:
o Close states that are immediately available (e.g., first level)
o Far states that we need to work to get to (e.g., second level)
e Inthiscase, close are the first two tasks that we do not know, and far are

tasks that we do know.
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We solve this problem, by stopping forgetting on the FAR states.
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We have tools to deal with forgetting!

e The continual learning field gives us tools to deal with forgetting.
o Often it means adding an auxiliary loss to our optimized loss function.
o Remember the old policy: L with parameters G*Which is good on Far

e Episodic Memory (EM) - add examples from Far in the buffer
e Elastic Weight Consolidation (EWC)

Lewe =) F'(0.—0')
e Behavioral Cloning (BC) Z

Lpc(0) = Esp|Dicr(me(-]s) || mo(:[5))]

e Kickstarting (KS) - same as BC, but sample from mr rather than B



Fine-tuning, Round 2: now with knowledge
retention
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Okay, but what if there’s no environment shift?

e We might see forgetting even if we pre-train and finetune on the same env:

Pre-train offline and fine-tune online.

Initial stage of

fine-tuning
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e Behavioral cloning is not perfect, so the fine-tuned model will err and see Far
states less often than during pre-training.

e Limited exposure to states we previously trained on leads to forgetting.



NetHack - next level
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Distribution shift in the pre-trained model

e BC agent struggles to visit deeper parts of the dungeon
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Main Results

Vanilla fine-tuning degenerates to the
level of model trained from scratch,
Choosing an effective method for
knowledge retention is nuanced,
Kickstarting managed to double the
performance of pre-trained model

achieving 10K points!
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Main Results

Our results demonstrate effectiveness of pre-training and fine-tuning,

achieving state-of-the-art results!

==+ Pre-training = Fine-tuning
== From scratch == Fine-tuning + BC = Fine-tuning + EWC
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Fine-tuning + KS

Models Human Monk
Offline only

DQN-Offline (Hambro et al., 2022b) 0.0+0.0
CQL (Hambro et al., 2022b) 366 + 35
IQL (Hambro et al., 2022b) 267 £ 28
BC (CDGPTS5) (Hambro et al., 2022b;a) 1059 £ 159
Scaled-BC (Tuyls et al., 2023) 5218 + -
Offline + Online

From Scratch + KS (Hambro et al., 2022b) 2090 + 123
From Scratch + BC (Hambro et al., 2022b) 2809 + 103
LDD* (Mu et al., 2022) 2100 % -
Scaled-BC + Fine-tuning + KS (ours) 10588 + 672




Future steps!

e GOAL: Beat AutoAscend. In particular discover new strategies / behaviors
that aren’t present in the hardcoded bot.
e Combine LLMs with RL:
o LLMs canreason and leverage information from NetHackWiki,
o How to connect language space and actions?
o Canwe use data from NethackWiki to suggest new strategies?

o Learning from Knowledge Bases: 3000+ articles on the NetHack Wiki.
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Page Discussion Read View source View history |Search NetHackWiki Q

Medusa

Main page Read View source View history |Search NetHackWiki Q

NetHackWiki is a free 3.6.6
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perilous monsters. They are depicted with a humanoid body, an

. X consider taking a look at the The gaze of Medusa can turn people to stone as it does 1d6 poison
Popular octopus-like head, and four tentacles around a lamprey-like mouth. = Popular pages X .
'opular pages basic strateav padae. in her oriacinal Greek folklore and <he aleo has 3



Summary

We need online fine-tuning to harness the power of RL models.

Online fine-tuning in RL is plagued by forgetting, but you can use

knowledge retention methods to deal with it.
When done right, fine-tuning gives us very good models:
o SOTA in NetHack, doubling the previous record.

NetHack remains a very important, challenging environment.



Thank you for your
attention!

Write to me: bartlomiej.cupial@gmail.com

Twitter / X: @CupiaBart

Arxiv: http://arxiv.org/abs/2402.02868

Github: https://github.com/BartekCupial/sample-factory/tree/nethack
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