Fine-tuning Reinforcement Learning Models is Secretly a Forgetting Mitigation Problem

Bartłomiej Cupiał*

Based on a work co-written with: **Maciej Wołczyk***, Mateusz Ostaszewski, Michał Bortkiewicz, Michał Zając, Razvan Pascanu, Łukasz Kuciński, Piotr Miłoś

About me

- IDEAS NCBR leading Polish AI research institution, based in Warsaw
- Part of the ELLIS network
- Many different teams, we work in Sequential Decision Making

Bartłomiej Cupiał

PhD student

- Offline and online RL
- How can we use LLMs in RL?
- LLMs for decision-making

Motivation - fine-tuning for RL

Offline training scales very well!

Problems with offline pre-training in RL

- Upper-bounded by the data-generating expert.
 - There are methods for improving but they only go so far.
- We never have enough data.
- We never clone perfectly and small errors accumulate.
 - We might quickly go out-of-distribution.
- Offline methods might misunderstand how their actions impact the environment.

Our proposed solution: online RL fine-tuning

Testbed: RoboticSequence

- The robot has to perform four tasks in a single episode:
 - Hammer in a nail
 - Push an object
 - Unplug a peg
 - Push an object around a wall
- Episode ends if we do not succeed

Fine-tuning scenario

- We have a model that do the last two tasks but not the first two.
- Let's use fine-tune it online to learn the other two tasks!
- Except...

What happened?

- Let's zoom in on particular tasks.
- The model forgets the pre-trained knowledge!

Why does this happen?

- Let's divide the states in our environment into two sets:
 - **Close** states that are immediately available (e.g., first level)
 - **Far** states that we need to work to get to (e.g., second level)
- In this case, close are the first two tasks that we do not know, and far are tasks that we do know.

We solve this problem, by stopping forgetting on the FAR states.

We have tools to deal with forgetting!

- The **continual learning** field gives us tools to deal with forgetting.
 - Often it means adding an auxiliary loss to our optimized loss function.
 - Remember the old policy: π_{*} with parameters θ_{*} which is good on Far
- Episodic Memory (EM) add examples from **Far** in the buffer
- Elastic Weight Consolidation (EWC)

$$\mathcal{L}_{EWC} = \sum_{i} F^{i} (\theta^{i}_{*} - \theta^{i})^{2}$$

• Behavioral Cloning (BC)

$$\mathcal{L}_{BC}(\theta) = \mathbb{E}_{s \sim \mathcal{B}}[D^s_{KL}(\pi_*(\cdot|s) \parallel \pi_{\theta}(\cdot|s))]$$

• Kickstarting (KS) - same as BC, but sample from π rather than **B**

Fine-tuning, Round 2: now with knowledge retention

Okay, but what if there's no environment shift?

We might see forgetting even if we pre-train and finetune on the same env:
Pre-train offline and fine-tune online.

- Behavioral cloning is not perfect, so the fine-tuned model will err and see Far states less often than during pre-training.
- Limited exposure to states we previously trained on leads to forgetting.

NetHack - next level

- Single player fantasy game from 1987
- Rogue-like game taking inspiration from rogue
- Grid world with rules from dungeons and dragons

Distribution shift in the pre-trained model

• BC agent struggles to visit deeper parts of the dungeon

Main Results

- Vanilla fine-tuning degenerates to the level of model trained from scratch,
- Choosing an effective method for knowledge retention is nuanced,
- Kickstarting managed to double the performance of pre-trained model achieving 10K points!

Main Results

• Our results demonstrate effectiveness of pre-training and fine-tuning, achieving state-of-the-art results!

Models	Human Monk
Offline only	
DQN-Offline (Hambro et al., 2022b)	0.0 ± 0.0
CQL (Hambro et al., 2022b)	366 ± 35
IQL (Hambro et al., 2022b)	267 ± 28
BC (CDGPT5) (Hambro et al., 2022b;a)	1059 ± 159
Scaled-BC (Tuyls et al., 2023)	5218 ± -
Offline + Online	
From Scratch + KS (Hambro et al., 2022b)	2090 ± 123
From Scratch + BC (Hambro et al., 2022b)	2809 ± 103
LDD* (Mu et al., 2022)	$2100 \pm -$
Scaled-BC + Fine-tuning + KS (ours)	10588 ± 672

Future steps!

- **GOAL**: Beat AutoAscend. In particular discover new strategies / behaviors that aren't present in the hardcoded bot.
- Combine LLMs with RL:
 - LLMs can reason and leverage information from NetHackWiki, Ο
 - How to connect language space and actions? Ο
 - Can we use data from NethackWiki to suggest new strategies? Ο
 - Learning from Knowledge Bases: 3000+ articles on the NetHack Wiki. Ο

Q

	Create account Log in				Create account Log in		
net	Main page Read View source View hi	story Search NetHackWiki Q	.net	Page Discussion Read View so	urce View history	Search NetHackWiki Q	
.h@ck. wiki	NetHackWiki is a free		n@CK. .wiki	Medusa			
Hello, welcome to NetHackWiki! "Never attack a guard."		community web site for the game <i>NetHack</i> that anyone		Medusa, @, is a unique monster that appears in		🛛 Medusa 🛐	
NetHack Wiki Forum	Featured article	can edit. This wiki is one big spoiler, so turn back now if	NetHack Wiki Forum	NetHack. She is a dangerous being that is always foun in the Dungeons of Doom on her special level, which is	Difficulty	25	
Community portal Recent changes	The mind flayer and master mind flayer , 1 , are especially	you want to figure things out for yourself. Otherwise,	Community portal Recent changes Random page	located between the level containing the magic portal to the Quest and the Castle.	Attacks	Weapon 2d4, Claw 1d8, Gaze 0d0 stoping, Bite	
opular pages	perilous monsters. They are depicted with a humanoid body, an octopus-like head, and four tentacles around a lamprey-like mouth.	consider taking a look at the basic strategy page.	Popular pages	The gaze of Medusa can turn people to stone as it doe in her original Greek folklore, and she also has a	5	1d6 poison	

Summary

- We need online fine-tuning to harness the power of RL models.
- Online fine-tuning in RL is plagued by forgetting, but you can use knowledge retention methods to deal with it.
- When done right, fine-tuning gives us very good models:
 - SOTA in NetHack, doubling the previous record.
- NetHack remains a very important, challenging environment.

Thank you for your attention!

- Write to me: <u>bartlomiej.cupial@gmail.com</u>
- Twitter / X: @CupiaBart
- Arxiv: <u>http://arxiv.org/abs/2402.02868</u>
- Github: https://github.com/BartekCupial/sample-factory/tree/nethack