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About me

● IDEAS NCBR – leading Polish AI research institution, based in Warsaw

● Part of the ELLIS network

● Many different teams, we work in Sequential Decision Making 

● Offline and online RL

● How can we use LLMs in RL?

● LLMs for decision-making



Motivation - fine-tuning for RL

Offline training scales very well!



Problems with offline pre-training in RL

● Upper-bounded by the data-generating expert.

○ There are methods for improving but they only go so far.

● We never have enough data.

● We never clone perfectly and small errors accumulate.

○ We might quickly go out-of-distribution.

● Offline methods might misunderstand how their actions impact the 

environment.

Our proposed solution: online RL fine-tuning



Testbed: RoboticSequence

● The robot has to perform four tasks 

in a single episode:

○ Hammer in a nail

○ Push an object

○ Unplug a peg

○ Push an object around a wall

● Episode ends if we do not succeed



Fine-tuning scenario

● We have a model that do the last 

two tasks but not the first two.

● Let’s use fine-tune it online to learn 

the other two tasks!

● Except…

Uh-oh.



What happened?

● Let’s zoom in on particular 

tasks.

● The model forgets the 
pre-trained knowledge!



Why does this happen?
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● Let’s divide the states in our environment into two sets:

○ Close states that are immediately available (e.g., first level)

○ Far states that we need to work to get to (e.g., second level)

● In this case, close are the first two tasks that we do not know, and far are 

tasks that we do know.



CLOSE FARCLOSE FAR
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Protect

We solve this problem, by stopping forgetting on the FAR states.



We have tools to deal with forgetting!
● The continual learning field gives us tools to deal with forgetting.

○ Often it means adding an auxiliary loss to our optimized loss function.

○ Remember the old policy: π
✴

 with parameters 𝜃
✴

 which is good on Far

● Episodic Memory (EM) – add examples from Far in the buffer

● Elastic Weight Consolidation (EWC)

● Behavioral Cloning (BC)

● Kickstarting (KS) - same as BC, but sample from π rather than 𝜝



Fine-tuning, Round 2: now with knowledge 
retention



● We might see forgetting even if we pre-train and finetune on the same env: 

Pre-train offline and fine-tune online.

Okay, but what if there’s no environment shift?
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● Behavioral cloning is not perfect, so the fine-tuned model will err and see Far 

states less often than during pre-training.

● Limited exposure to states we previously trained on leads to forgetting.



NetHack - next level
● Single player fantasy game from 1987

● Rogue-like game taking inspiration from rogue

● Grid world with rules from dungeons and dragons



Distribution shift in the pre-trained model
● BC agent struggles to visit deeper parts of the dungeon

CLOSE FAR



Main Results
● Vanilla fine-tuning degenerates to the 

level of model trained from scratch, 

● Choosing an effective method for 

knowledge retention is nuanced,

● Kickstarting managed to double the 

performance of pre-trained model 

achieving 10K points!

CLOSE FAR



Main Results
● Our results demonstrate effectiveness of pre-training and fine-tuning, 

achieving state-of-the-art results!



Future steps!
● GOAL: Beat AutoAscend. In particular discover new strategies / behaviors 

that aren’t present in the hardcoded bot.

● Combine LLMs with RL:

○ LLMs can reason and leverage information from NetHackWiki,

○ How to connect language space and actions?

○ Can we use data from NethackWiki to suggest new strategies?

○ Learning from Knowledge Bases: 3000+ articles on the NetHack Wiki.



Summary
● We need online fine-tuning to harness the power of RL models.

● Online fine-tuning in RL is plagued by forgetting, but you can use 

knowledge retention methods to deal with it.

● When done right, fine-tuning gives us very good models:

○ SOTA in NetHack, doubling the previous record.

● NetHack remains a very important, challenging environment.



Thank you for your 
attention!

● Write to me: bartlomiej.cupial@gmail.com

● Twitter / X: @CupiaBart

● Arxiv: http://arxiv.org/abs/2402.02868

● Github: https://github.com/BartekCupial/sample-factory/tree/nethack
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