
Fine-tuning Reinforcement Learning Models is 
Secretly a Forgetting Mitigation Problem

Bartłomiej Cupiał*

Based on a work co-written with:
Maciej Wołczyk*, Mateusz Ostaszewski, Michał Bortkiewicz, Michał 

Zając, Razvan Pascanu, Łukasz Kuciński, Piotr Miłoś



About me

● IDEAS NCBR – leading Polish AI research institution, based in Warsaw

● Part of the ELLIS network

● Many different teams, we work in Sequential Decision Making 

● Offline and online RL

● How can we use LLMs in RL?

● LLMs for decision-making



Motivation - fine-tuning for RL

Offline training scales very well!



Problems with offline pre-training in RL

● Upper-bounded by the data-generating expert.

○ There are methods for improving but they only go so far.

● We never have enough data.

● We never clone perfectly and small errors accumulate.

○ We might quickly go out-of-distribution.

● Offline methods might misunderstand how their actions impact the 

environment.

Our proposed solution: online RL fine-tuning



Testbed: RoboticSequence

● The robot has to perform four tasks 

in a single episode:

○ Hammer in a nail

○ Push an object

○ Unplug a peg

○ Push an object around a wall

● Episode ends if we do not succeed



Fine-tuning scenario

● We have a model that do the last 

two tasks but not the first two.

● Let’s use fine-tune it online to learn 

the other two tasks!

● Except…

Uh-oh.



What happened?

● Let’s zoom in on particular 

tasks.

● The model forgets the 
pre-trained knowledge!



Why does this happen?

CLOSE FARCLOSE FAR

Initial stage of 
fine-tuning

Perfect
trajectories

Bad
trajectories

FAR
states

CLOSE 
states FARCLOSE Goal

● Let’s divide the states in our environment into two sets:

○ Close states that are immediately available (e.g., first level)

○ Far states that we need to work to get to (e.g., second level)

● In this case, close are the first two tasks that we do not know, and far are 

tasks that we do know.



CLOSE FARCLOSE FAR

Fine-tuning
Protect

We solve this problem, by stopping forgetting on the FAR states.



We have tools to deal with forgetting!
● The continual learning field gives us tools to deal with forgetting.

○ Often it means adding an auxiliary loss to our optimized loss function.

○ Remember the old policy: π
✴

 with parameters 𝜃
✴

 which is good on Far

● Episodic Memory (EM) – add examples from Far in the buffer

● Elastic Weight Consolidation (EWC)

● Behavioral Cloning (BC)

● Kickstarting (KS) - same as BC, but sample from π rather than 𝜝



Fine-tuning, Round 2: now with knowledge 
retention



● We might see forgetting even if we pre-train and finetune on the same env: 

Pre-train offline and fine-tune online.

Okay, but what if there’s no environment shift?

Perfect
trajectories

Almost perfect
trajectories

Bad
trajectories

FAR
states

CLOSE 
states FARCLOSE Goal

CLOSE FAR CLOSE FAR

Initial stage of 
fine-tuning

● Behavioral cloning is not perfect, so the fine-tuned model will err and see Far 

states less often than during pre-training.

● Limited exposure to states we previously trained on leads to forgetting.



NetHack - next level
● Single player fantasy game from 1987

● Rogue-like game taking inspiration from rogue

● Grid world with rules from dungeons and dragons



Distribution shift in the pre-trained model
● BC agent struggles to visit deeper parts of the dungeon

CLOSE FAR



Main Results
● Vanilla fine-tuning degenerates to the 

level of model trained from scratch, 

● Choosing an effective method for 

knowledge retention is nuanced,

● Kickstarting managed to double the 

performance of pre-trained model 

achieving 10K points!

CLOSE FAR



Main Results
● Our results demonstrate effectiveness of pre-training and fine-tuning, 

achieving state-of-the-art results!



Future steps!
● GOAL: Beat AutoAscend. In particular discover new strategies / behaviors 

that aren’t present in the hardcoded bot.

● Combine LLMs with RL:

○ LLMs can reason and leverage information from NetHackWiki,

○ How to connect language space and actions?

○ Can we use data from NethackWiki to suggest new strategies?

○ Learning from Knowledge Bases: 3000+ articles on the NetHack Wiki.



Summary
● We need online fine-tuning to harness the power of RL models.

● Online fine-tuning in RL is plagued by forgetting, but you can use 

knowledge retention methods to deal with it.

● When done right, fine-tuning gives us very good models:

○ SOTA in NetHack, doubling the previous record.

● NetHack remains a very important, challenging environment.



Thank you for your 
attention!

● Write to me: bartlomiej.cupial@gmail.com

● Twitter / X: @CupiaBart

● Arxiv: http://arxiv.org/abs/2402.02868

● Github: https://github.com/BartekCupial/sample-factory/tree/nethack

mailto:bartlomiej.cupial@gmail.com
http://arxiv.org/abs/2402.02868
https://github.com/BartekCupial/sample-factory/tree/nethack

