#### Fixed Points of Nonnegative Neural Networks



**Tomasz Piotrowski** 

Talk based on:

TJ Piotrowski, RLG Cavalcante, M Gabor, Fixed points of nonnegative neural networks," Journal of Machine Learning Research, 25(139), 2024.

See also:

M Gabor, TJ Piotrowski, RLG Cavalcante, Positive concave deep equilibrium models, Proceedings of the 41st International Conference on Machine Learning, PMLR 235.

### Motivation: nonnegativity

- Nonnegative inputs appear naturally in spectral analysis, image and text processing

- Equip neural networks with the ability of decomposing the input signal into additive sparse components, thus providing an understandable hierarchical representation of the input data

- Recent resurgence of analog neural networks, with weight parameters physically encoded in the conductance of programmable resistors

# Motivation: fixed point analysis of neural networks

- For autoencoder networks, their fixed points are exactly the inputs that can be perfectly reconstructed

- A host of iterative methods can be cast as a fixed-point iteration, e.g., of the gradient descent-type:

$$x_{n+1} := (Id - \alpha \nabla f)(x_n), \quad n = 0, 1, 2, \dots$$

- Application to deep equilibrium networks (DEQs): see our paper at ICML 2024

#### Standard neural network model

$$T \stackrel{\text{df.}}{=} T_n \circ \cdots \circ T_1$$
$$T_i(x_{i-1}) = \sigma_i(y_i) = \left(\sigma_{i_1}(y_{i_1}), \sigma_{i_2}(y_{i_2}), \dots, \sigma_{i_{k_i}}(y_{i_{k_i}})\right)$$
$$y_i = W_i x_{i-1} + b_i$$

#### Standard neural network model

$$T \stackrel{\text{df.}}{=} T_n \circ \cdots \circ T_1$$
$$T_i(x_{i-1}) = \sigma_i(y_i) = \left(\sigma_{i_1}(y_{i_1}), \sigma_{i_2}(y_{i_2}), \dots, \sigma_{i_{k_i}}(y_{i_{k_i}})\right)$$
$$y_i = W_i x_{i-1} + b_i$$

 $T^{F} \stackrel{\text{df.}}{=} T_{n} \circ \cdots \circ T_{1} - \text{EEG forward (compression) model}$  $T^{I} \stackrel{\text{df.}}{=} T_{N} \circ \cdots \circ T_{n+1} - \text{EEG inverse (decompression) model}$  $T^{F \to I} \stackrel{\text{df.}}{=} T^{I} \circ T^{F} \quad \text{Fix}(T^{F \to I}) \stackrel{\text{df.}}{=} \{x \in \mathbb{R}^{s} : T^{F \to I}(x) = x\}$ 

Nonnegative networks with nonnegative biases are monotonic and (weakly) scalable

For nonnegative weights and biases and concave activation functions, the resulting neural network is monotonic and (weakly) scalable:

$$\forall x, \tilde{x} \in \mathbb{R}^k_+ \quad x \le \tilde{x} \implies f(x) \le f(\tilde{x})$$
$$\forall x \in \mathbb{R}^k_+ \; \forall \rho \ge 1 \quad f(\rho x) \le \rho f(x)$$

$$u \le v \Leftrightarrow v - u \in \mathbb{R}^k_+$$

Nonnegative networks with nonnegative biases are monotonic and (weakly) scalable

For nonnegative weights and biases and concave activation functions, the resulting neural network is monotonic and (weakly) scalable:

$$\forall x, \tilde{x} \in \mathbb{R}^k_+ \quad x \le \tilde{x} \implies f(x) \le f(\tilde{x})$$

$$\forall x \in \mathbb{R}^k_+ \ \forall \rho \ge 1 \quad f(\rho x) \le \rho f(x)$$

under mild assumptions (e.g., sigmoid used or positive weights used at a single layer):

$$\forall x \in \mathbb{R}^k_+ \ \forall \rho > 1 \quad f(\rho x) \ll \rho f(x)$$

 $u \ll v \Leftrightarrow v - u \in \operatorname{int}(\mathbb{R}^k_+)$ 

# Spectral radius of a monotonic and (weakly) scalable network

Asymptotic mapping:

$$T_{\infty}: \mathbb{R}^k_+ \to \mathbb{R}^k_+: x \mapsto \lim_{p \to \infty} \frac{1}{p} T(px)$$

Spectral radius:

$$\rho(T_{\infty}) = \max\{\lambda \in \mathbb{R}_{+} : \exists x \in \mathbb{R}_{+}^{k} \setminus \{0\} \text{ s.t. } T_{\infty}(x) = \lambda x\} \in \mathbb{R}_{+}$$

# Spectral radius of a monotonic and (weakly) scalable network

Asymptotic mapping:

$$T_{\infty}: \mathbb{R}^k_+ \to \mathbb{R}^k_+: x \mapsto \lim_{p \to \infty} \frac{1}{p} T(px)$$

Spectral radius:

$$\rho(T_{\infty}) = \max\{\lambda \in \mathbb{R}_{+} : \exists x \in \mathbb{R}_{+}^{k} \setminus \{0\} \text{ s.t. } T_{\infty}(x) = \lambda x\} \in \mathbb{R}_{+}$$

We have the following result:

$$T_{\infty}(x) = W_n \dots W_2 W_1(x) \text{ or } T_{\infty}(x) = 0$$

### Fixed points and spectral radius

If a neural network  $T: \mathbb{R}^k_+ \to \mathbb{R}^k_+$ is monotonic and weakly scalable and grows fast enough<sup>\*</sup> and  $\rho(T_{\infty}) < 1$ , then  $\operatorname{Fix}(T)$  is an interval.

\*Is upper- and lower-primitive at its fixed points.

### Fixed points and spectral radius

[1] If a neural network  $T \colon \mathbb{R}^k_+ \to \mathbb{R}^k_+$ is monotonic and scalable, then T has a fixed point if and only if  $\rho(T_\infty) < 1$ . This fixed point is unique and positive.

[1] R. L. G. Cavalcante, Q. Liao, and S. Stańczak, "Connections between spectral properties of asymptotic mappings and solutions to wireless network problems," IEEE Transactions on Signal Processing, vol. 67, no. 10, pp. 2747–2760, 2019.

### Nonnegative monotonic networks

Consider a nonnegative and monotonic neural network, e.g., such that:

- weight operators are nonnegative,

- if a layer admits negative biases, then its activation function should be globally nonnegative and monotonic (e.g., composed of ReLU or sigmoid),

- if a layer admits an activation function which is only monotonic on  $\mathbb{R}^k_+$  (e.g., composed of Swish, Mish, GELU), then its biases should be nonnegative.

### Nonnegative monotonic networks

Consider a nonnegative and monotonic neural network, e.g., such that:

- weight operators are nonnegative,

- if a layer admits negative biases, then its activation function should be globally nonnegative and monotonic (e.g., composed of ReLU or sigmoid),

- if a layer admits an activation function which is only monotonic on  $\mathbb{R}^k_+$  (e.g., composed of Swish, Mish, GELU), then its biases should be nonnegative.

For such a network, the fixed point iteration starting at  $x_0 = 0$  converges to its least fixed point if it exists.

### Performance results

Spectral radiuses, products of weight matrices spectral norms, spectral norms of products of weight matrices, and test loss on the MNIST dataset for different configurations of autoencoders.

| Configuration     | Test loss | $ ho(T_{\infty})$ | $\ W_1\ \cdot\ W_2\ $ | $\ W_2 \cdot W_1\ $ |
|-------------------|-----------|-------------------|-----------------------|---------------------|
| Sigmoid NN        | 0.2308    | 0.00              | 7.271                 | 6.052               |
| Tanh NN           | 0.0065    | 0.00              | 463.9                 | 187.3               |
| Tanh PN           | 0.0255    | 0.00              | 40.63                 | 35.85               |
| ReLU spectral NN  | 0.0063    | 0.98              | 1.072                 | 0.999               |
| ReLU spectral PN  | 0.0059    | 0.99              | 1.0006                | 1.0001              |
| Tanh + Swish NN   | 0.0041    |                   | 15.221                | 8.8120              |
| ReLU + Sigmoid NR | 0.0025    |                   | 2845.3                | 215.13              |
| ReLU + Sigmoid RR | 0.0052    |                   | 3196.9                | 332.97              |

### Performance results

Spectral radiuses, products of weight matrices spectral norms, spectral norms of products of weight matrices, and test loss on the MNIST dataset for different configurations of autoencoders.

| Configuration     | Test loss | $ ho(T_{\infty})$ | $\ W_1\ \cdot\ W_2\ $ | $\ W_2 \cdot W_1\ $ |
|-------------------|-----------|-------------------|-----------------------|---------------------|
| Sigmoid NN        | 0.2308    | 0.00              | 7.271                 | 6.052               |
| Tanh NN           | 0.0065    | 0.00              | 463.9                 | 187.3               |
| Tanh PN           | 0.0255    | 0.00              | 40.63                 | 35.85               |
| ReLU spectral NN  | 0.0063    | 0.98              | 1.072                 | 0.999               |
| ReLU spectral PN  | 0.0059    | 0.99              | 1.0006                | 1.0001              |
| Tanh + Swish NN   | 0.0041    |                   | 15.221                | 8.8120              |
| ReLU + Sigmoid NR | 0.0025    |                   | 2845.3                | 215.13              |
| ReLU + Sigmoid RR | 0.0052    |                   | 3196.9                | 332.97              |

### **Open questions & Next steps**

- 1. How robust is the reconstruction of points which are *approximate* fixed points?
- 2. How can nonnegative networks be trained efficiently?
- 3. What is the shape of the fixed point set of generic nonnegative monotonic neural networks?

4. How to expand expressibility of nonnegative neural networks while maintaining their benefits?

## Thank you for your attention