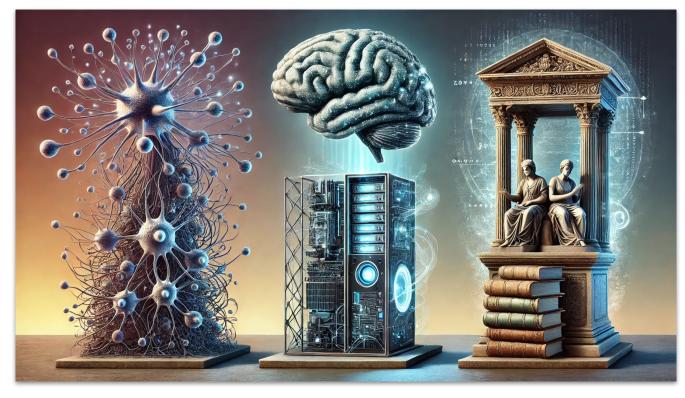


Augmentation-aware Self-supervised Learning with Conditioned Projector

> Marcin Przewięźlikowski, Mateusz Pyla, Bartosz Zieliński, Bartłomiej Twardowski, Jacek Tabor, Marek Śmieja ML in PL 2024

Three pillars of AI success



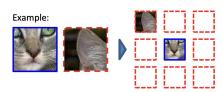
Problems with data

Self-supervised learning

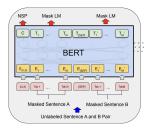
"the dark matter of intelligence" - Yann LeCun

What can serve as a pretext task?

And how they did it before 2020s



Context prediction

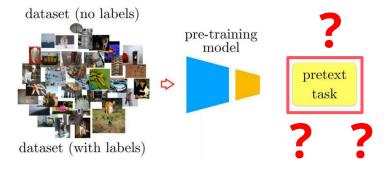


Masked modeling (i.e. BERT)

90° rotation

Rotation prediction

Image colorization



Modern pretext tasks

Contrastive Siamese Joint-Embedding models

https://ai.meta.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/, https://arxiv.org/pdf/2111.09613.pdf

7

),

Modern pretext tasks

Contrastive Siamese Joint-Embedding models

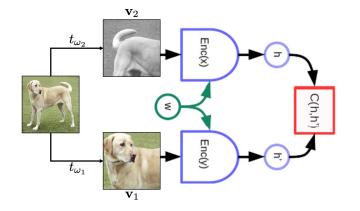
Intuition:

- augment an image in two different ways
- obtain network representations of two augmented images

 $(\boldsymbol{x}, \boldsymbol{x}') \in \text{PositivePairs}$

• optimize the (pairwise) similarity of image representations **and** their diversity

$$\mathcal{L}_{\mathrm{SSL}} = \sum \quad \text{Distance}(f_{\theta}(\boldsymbol{x}), f_{\theta}(\boldsymbol{x}')) - \text{Diversity}(\{f_{\theta}(\boldsymbol{x}), \boldsymbol{x} \in \mathbb{X}\})$$



What are the problems with Joint-Embedding SSL?

Joint-embedding SSL methods are inherently bound to augmentations

Augmentations need to be carefully selected for pretraining datasets

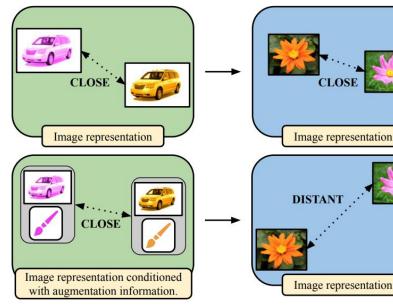
• solved for ImageNet, but what about other datasets?

Invariance to augmentations can be detrimental for downstream tasks

• invariance to color shifts may not transfer well to flower classification

Conditional Augmentation-aware Self-Supervised Learning (CASSLE)

Projector representation used in the contrastive objective



Feature extractor representation used in downstream tasks

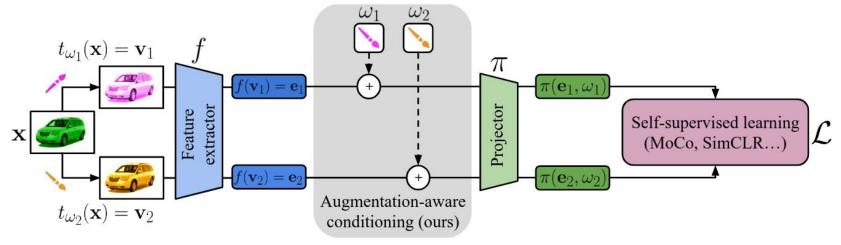
Previously:

Join two image embeddings together

Now:

Join two image embeddings together **on condition of knowing how they were augmented**

Architecture of CASSLE



- Image and augmentation information are joined together before the projector
- Feature extractor (e.g. a ResNet) remains unaware of augmentation information
- In order for projector to act upon the knowledge of augmentations, feature extractor must learn to preserve information about features modified by them

CASSLE is applicable to all J-E architectures, regardless of their loss function.

What defines the augmentations?

Original image

Random cropping $\omega^{\texttt{crop}} = (y_{\texttt{center}}, x_{\texttt{center}}, H, W)$ = (0.4, 0.3, 0.6, 0.4)

Horizontal flipping $\omega^{\texttt{flip}} = \mathbb{1}[\mathbf{v} \text{ is flipped}]$ = 1

Color jittering $\omega^{\text{color}} = (\lambda_{\text{bright}}, \lambda_{\text{contrast}}, \lambda_{\text{sat}}, \lambda_{\text{hue}})$ = (0.3, 1.0, 0.8, 1.0)

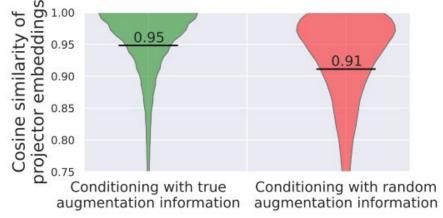
Gaussian blurring

 $\omega^{\mathtt{blur}} = \mathrm{std.} \mathrm{dev.} \mathrm{of} \mathrm{Gaussian} \mathrm{kernel}$ = 1.0

Figure 3: Examples of the commonly-used augmentations and their parameters ω^{aug} .

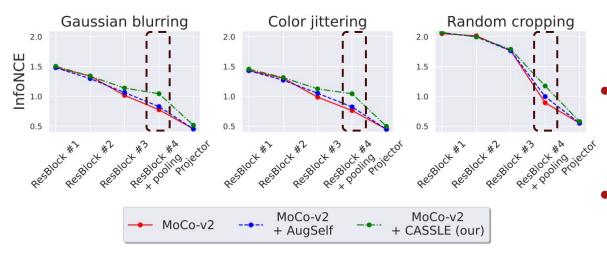
Is the knowledge of augmentations useful for SSL tasks?

- We *do not* explicitly force the model to utilize the augmentation information.
- Conditioning the CASSLE projector with wrong augmentation information decreases its ability to draw image pairs together.
- CASSLE projector indeed relies on augmentation information to perform its task.



group of machine

CASSLE learns an augmentation-aware data representation



- we measure the error of matching embeddings of augmented image pairs
 - embeddings generated by CASSLE are **hardest** to match together (the highest InfoNCE value)
- CASSLE preserves the largest amount of augmentation-induced noise

CASSLE improves the transferability of SSL models

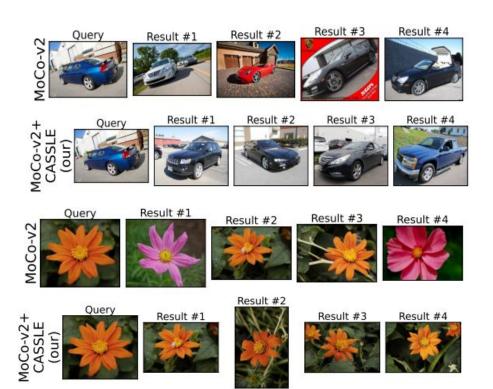
Table 1: Linear evaluation on downstream classification and regression tasks. CASSLE consistently improves representations formed by vanilla SSL approaches and performs better or comparably to other techniques of increasing sensitivity to augmentations [69, 40, 14].

Method	C10	C100	Food	MIT	Pets	Flowers	Caltech	Cars	FGVCA	DTD	SUN	CUB	300W
						SimCLR	[15]						
Vanilla	84.41 [†]	61.40	57.48 [†]	63.10 [†]	71.60 [†]	83.37 [†]	79.67 [†]	35.14 [†]	40.03 [†]	64.90	46.92 [†]	30.98 [†]	88.59 [†]
AugSelf [40] [†]	84.45	62.67	59.96	63.21	70.61	85.77	77.78	37.38	42.86	65.53	49.18	34.24	88.27
AI [14]	83.90	63.10	-	-	69.50	68.30	74.20	-	-	53.70	-	38.60	88.00
CASSLE	86.31	64.36	60.67	63.96	72.33	85.22	79.62	39.86	43.10	65.96	48.91	33.21	88.88
					M	oCo-v2 [3	2, 17]						
Vanilla	84.60	61.60	59.67	61.64	70.08	82.43	77.25	33.86	41.21	64.47	46.50	32.20	88.77 [†]
AugSelf [40]	85.26	63.90	60.78	63.36	73.46	85.70	78.93	37.35	39.47	66.22	48.52	37.00	89.49
AI [14]	81.30	64.60	<u></u>	<u></u>	74.00	81.30	78.90	<u></u> 20	<u> </u>	68.80	-	41.40	90.00
LooC [69]		_	—	_	_	_	_	_	_	-	39.60	_	_
IFM [57] [†]	83.36	60.22	59.86	60.60	72.99	85.73	78.77	36.54	41.05	62.34	47.48	35.90	88.92
CASSLE	86.32	65.29	61.93	63.86	72.86	86.51	79.63	38.82	42.03	66.54	49.25	36.22	88.93
		MoCo-	v3 [19]	with Vi	F-Small	[23] pretr	ained on	the full	ImageNet	dataset			
Vanilla [†]	83.17	62.40	56.15	53.28	62.29	81.48	69.63	28.63	32.84	57.18	42.16	35.00	87.42
AugSelf [40] [†]	84.25	64.12	58.28	56.12	63.93	83.13	72.45	29.64	32.54	60.27	43.22	37.16	87.85
CASSLE	85.13	64.67	57.30	55.90	63.88	82.42	73.53	30.92	35.91	58.24	43.37	36.09	88.53

Table 2: Average Precision of object detection on VOC dataset [25, 42]. CASSLE extension of MoCo-v2 and SimCLR outperforms the vanilla approaches and AugSelf extension by a small margin.

Method	MoCo-v2	SimCLR			
Vanilla	45.12	44.74			
AugSelf [40]	45.20	44.50			
CASSLE	45.90	45.60			

What data is similar for SSL?



Summary

- augmentation invariance is a key component of modern Self-Supervised Learning
- it can lead to learning representations that are suboptimal for downstream tasks which rely on features of data modified by augmentations
- we propose to increase augmentation-awareness of SSL methods by conditioning them with information about used augmentations

Thank you for your attention!

gmum.net

paper

ideas-ncbr.pl

Some pics by DALLE-3

Friday:

Session 2 / Lecture Hall B / 10:35

Deep learning for effective analysis of high content screening Adriana Borowa

Session 4 / Lecture Hall A / 14:30

Efficient fine-tuning of LLMs: exploring PEFT methods and LORA-XS insights Klaudia Bałazy

Session 5 / Lecture Hall B / 14:30

Current trends in intrinsically interpretable Deep Learning Dawid Rymarczyk

Neural rendering: the future of 3D modeling Przemysław Spurek

Check out our talks during ML in PL 2024!

Saturday:

Session 7 / Lecture Hall A / 12:00

AdaGlimpse: Active Visual Exploration with Arbitrary Glimpse Position and Scale Adam Pardyl

Session 8 / Lecture Hall B / 12:00

Augmentation-aware Self-supervised Learning with Conditioned Projector Marcin Przewięźlikowski

gmum.net