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“the dark matter of intelligence” - Yann LeCun 4
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What can serve as a pretext task? Y \DEAS
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Context prediction

Masked modeling
(i.e. BERT)

90° rotation 270° rotation

Rotation prediction
Image colorization

https://arxiv.org/pdf/1505.05192.pdf, https://richzhang.github.io/colorization/, https://arxiv.org/pdf/1803.07728.pdf, 5



https://arxiv.org/pdf/1505.05192.pdf
https://richzhang.github.io/colorization/
https://arxiv.org/pdf/1803.07728.pdf

oy OLL)
Modern pretext tasks
Contrastive Stamese Joint-Embedding models

https://ai.meta.com/blog/self-supervised-learning-the-dark-matter-of-intellicence/ , https://arxiv.org/pdf/2111.09613.pdf 6
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Contrastive Stamese Joint-Embedding models

Intuition:

e augment an image in two different ways
obtain network representations of two
augmented images

e optimize the (pairwise) similarity of image
representations and their diversity

Eagp— Z Distance( fo(x), fo(x")) — Diversity({ fo(x), xz € X}),

(x,x’) EPositivePairs

https://ai.meta.com/blog/self-supervised-learning-the-dark-matter-of-intellicence/ , https://arxiv.org/pdf/2111.09613.pdf 7
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What are the problems with
Joint-Embedding SSL?

Joint-embedding SSL methods are inherently bound to
augmentations

learning research

Augmentations need to be carefully selected for
pretraining datasets

e solved for ImageNet, but what about other datasets?

Invariance to augmentations can be detrimental for
downstream tasks

e invariance to color shifts may not transfer well to flower
classification

https://openreview.net/pdf?id=CZ8Y3NzuVzO
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Projector representation used Feature extractor representation
in the contrastive objective used in downstream tasks

o Previously:
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k[ Image representation ]—/ k[ Image representation ]—/

Join two image embeddings together

=8 DISTANT .-
— Join two image embeddings together on condition
iyg -' of knowing how they were augmented
7Ly
[ Image representation conditioned \ [ ; ] /
| with augmentation information. ) Sohes ey

https://arxiv.org/pdf/2306.06082.pdf, joint work with M. Pyla, B. Zielifiski, B. Twardowski, J. Tabor and M. Smieja 9
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Architecture of CASSLE Y DEAS
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w(X) = V3 conditioning (ours)
e Image and augmentation information e In order for projector to act upon the
are joined together before the projector knowledge of augmentations, feature extractor
e Feature extractor (e.g. a ResNet) remains must learn to preserve information about

unaware of augmentation information

features modified by them

CASSLE is applicable to all J-E architectures, regardless of their loss function.
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What defines the augmentations? TN

Random cropping Horizontal flipping

WP = (Yeansers Teonters H, W) WP — 1[v is fipped]
=(0.4,0.3,0.6,0.4) =gl

Color jittering Gaussian blurring

Pz T R, (NI W W = std. dev. of Gaussian kernel
=10.3,1.0,0.8,1.0) =120

Figure 3: Examples of the commonly-used augmentations and their parameters w?"8.

https://arxiv.org/pdf/2111.09613.pdf
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e We do not explicitly force the model to utilize
the augmentation information.
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e Conditioning the CASSLE projector with wrong
augmentation information decreases its ability
to draw image pairs together.

o
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o
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Cosine similarity of
projector embeddings

o CASSLE projector indeed relies on ‘ Conditioning with true Conditioning with random
augmentation information to perform its task. augmentation information augmentation information
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CASSLE learns an giitm)
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representation

e we measure the error of matching
embeddings of augmented image

Gaussian blurring '
4 pairs

Color jittering
P

Random cropping

embeddings generated by CASSLE
are hardest to match together
(the highest InfoNCE value)

CASSLE preserves the largest

MoCo-v2 MoCo-v2 | ion-i
—— MoCov2 -~ Ja-ocllt =+ 4 CASSLE (oun) amount of augmentation-induced
’ noise
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CASSLE improves the transferability of

SSL models

Table 1: Linear evaluation on downstream classification and regression tasks. CASSLE consistently
improves representations formed by vanilla SSL approaches and performs better or comparably to

other techniques of increasing sensitivity to augmentations [69, 40, 14].

Method C10 Cl100 Food MIT Pets Flowers Caltech Cars FGVCA DTD SUN CUB 300W
SimCLR [15]
Vanilla 84.417 61.40 57.48" 63.10" 71.607 83.377 79.677 35.147 40.037 64.90 46.927 30.98" 88.59%
AugSelf [40]T 8445 62.67 59.96 63.21 70.61 8577 7778 37.38 42.86 6553 49.18 3424 8827
Al [14] 83.90 63.10 - - 6950 6830 7420 - - 5370 -  38.60 88.00
CASSLE 86.31 64.36 60.67 63.96 7233 8522 79.62 39.86 43.10 65.96 4891 33.21 88.88
MoCo-v2 [32, 17]
Vanilla 84.60 61.60 59.67 61.64 70.08 8243 7725 33.86 4121 6447 4650 3220 83.77
AugSelf [40] 8526 63.90 60.78 63.36 73.46 8570 7893 37.35 3947 6622 4852 37.00 89.49%
Al [14] 81.30 64.60 — - 7400 8130 7890 - -~ 6880 — 4140 90.00
LooC [69] = - = - = L - = = - 3960 - -
IFM [57]F 83.36 60.22 59.86 60.60 72.99 8573 7877 36.54 41.05 6234 4748 3590 88.92
CASSLE 86.32 6529 61.93 63.86 72.86 86.51 79.63 38.82 42.03 66.54 49.25 36.22 88.93
MoCo-v3 [19] with ViT-Small [23] pretrained on the full ImageNet dataset.
Vanilla® 83.17 62.40 56.15 5328 6229 81.48 69.63 28.63 32.84 57.18 42.16 35.00 87.42
AugSelf [40]" 8425 64.12 58.28 56.12 63.93 83.13 7245 29.64 32.54 60.27 4322 37.16 87.85
CASSLE 85.13 64.67 5730 5590 63.88 8242 7353 30.92 3591 5824 43.37 36.09 88.53
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Table 2: Average Precision of object detection
on VOC dataset [25, 42]. CASSLE extension of
MoCo-v2 and SimCLR outperforms the vanilla
approaches and AugSelf extension by a small mar-

gin.

MoCo-v2  SimCLR

45.12 44.74
45.20 44.50
45.90 45.60
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CASSLE
(our)

MoCo-v2+ MoCo-v2

MoCo-v2

Result #1

MoCo-v2+
CASSLE
(our)
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e augmentation invariance is a key component of modern Self-Supervised
Learning

e itcan lead to learning representations that are suboptimal for downstream
tasks which rely on features of data modified by augmentations

e we propose to increase augmentation-awareness of SSL methods by
conditioning them with information about used augmentations

16
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