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Phenotypic screening: introduction

Target vs phenotypic screening

Source: Singh, Vijay & Seed, Thomas & Ayodele, Okedele. (2019). Drug discovery strategies for acute radiation syndrome. Expert Opinion on Drug Discovery. 14.

1-15. 10.1080/17460441.2019.1604674.

Drug Discovery Approaches
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Target-based approach
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Phenotype-based approach

Lower cost & less time-consuming
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Higher cost & more time-consuming

Begins with know

n molecular target

Molecular target may not be identified

Fast lead optimization process

Slow lead optimization process

Easier structure-activity relationship

Structure-activity relationship difficult

Hypothesis-driven & lower possibility
for clinical translatability

Empirical-based & higher possibility
for clinical translatability
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Data: High Content Screening
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Source: https://www.oru.se/english/research/research-projects/rp/?rdb=p2550
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Data: High Content Screening Ardigen
2-dye assay for inflammation assessment

Red: nucleus

: plasma membrane Control

Inflammation

Source: Borowa et al. Weakly-Supervised Cell Classification for Effective High Content Screening, ICCS 2022



Data: High Content Screening Ardigen
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Data: Challenges

1. Large amounts of data: needle in a haystack

Source: https://www.rxrx.ai/

Total Number of Images

Image Dimension

RxRx3

Download

January 2023

Genetic Perturbations
(genome-wide CRISPR)

Small molecules
~2.2M
2048x2048x6

~83,100 GB

RxRx2

Download

August 2020

Large molecules

131,953
1024x1024x6

~185 GB

RxRx19b

Download

April 2020

Infectious disease

Small & large molecules

70,384
2048x2048x6

~409 GB

RxRx19a

Download

August 2020

Infectious disease

Small molecules

305,520
1024x1024%6

~450 GB
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Download

January 2023

Genetic perturbations
(SiRNA)

125,510
512x512x6

~46 GB




Data: Challenges Ardigen
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1. Large amounts of data: needle in a haystack

2. Standardization and reproducibility

Source: Chandrasekaran et al. JUMP Cell Painting dataset: morphological impact of 136,000 chemical and genetic perturbations 8
https://www.biorxiv.org/content/10.1101/2023.03.23.534023v2.full.pdf



Data: Challenges Ardigen

1. Large amounts of data: needle in a haystack
2. Standardization and reproducibility _

Public labels for the dataset of
3. Imbalanced datasets and lack of labels 30,000 compounds

1000+
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Bray et al. A dataset of images and morphological profiles of 30 000 small-molecule treatments using the Cell Painting assay GigaScience, Volume 6, Issue 12, 9
December 2017, giw014, https://doi.org/10.1093/gigascience/giw014



& Welcome to CellProfiler

Data: Challenges

Welcome to CellProfiler!

More Examples Tutorials

Try Example Getting Started

By

& CellProfiler 4.0.0
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. Large amounts of data: needle in a haystack

Measure texture features of the nuclei, cells and cytoplasm from the cropped DAPI image.
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. Standardization and reproducibility
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Source: https://cellprofiler.org/
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Data: Challenges Ardigen

Cell Live/Dead percentage evaluation

Drug A Drug B
' » . - .

1. Large amounts of data: needle in a haystack
Standardization and reproducibility
Imbalanced datasets and lack of labels

Interpretability
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Complexity of data and off-targets

= |jve Cell
= Dead Cell

11
Source: https://idea-bio.com/automating-toxicology-studies-high-content-screening/



Isolation Forest
Applications iTree 1 iTree n Ardigen

Hit identification
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Source: Adamski et al. Al-driven identification of hits from Cell Painting based screening, Cytodata 2023



Applications
Hit identification
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Source: Bracha et al. Al-driven method for identification of hits from phenotypic screening with Cell Painting Assay, SLAS Europe 2023

13



Applications Ardigen
Property prediction

Property

Representation model Classifier
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Applications
Property prediction

Representation model
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Applications

Image representation
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Source: Borowa et al. Decoding phenotypic screening: A comparative analysis of image representations,
Computational and Structural Biotechnology Journal, Volume 23, 2024

Method

EEEENEN

| e

Ardigen

ResNet (ImageNet)
ResNet (JUMP tasks)
ResNet (ECFP)

ResNet (CP)

SimCLR multiple sources
SimCLR single source
DINO

Single method

Method + CellProfiler
CellProfiler
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Applications Ardigen
Phenotype induction: compound library screening

Hit candidates
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Source: Gainski et al. Artificial Intelligence enriches phenotype-guided Virtual Screening and proposes diverse hit candidates, SLAS 2023



Applications

Phenotype prediction from molecule
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(b) Training Strategy

Source: Yang et al., Mol2Image: Improved Conditional Flow Models for Molecule to Image Synthesis, CVPR 2021
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Summary

e Scalability and efficiency: Deep Learning methods accelerate
analysis of massive amounts of data generated for phenotypic
screening

e (Cost and time reduction

e Problem of small amount of labeled public data persists

e There is still a way to go for interpretability



Friday:
Session 2 [ Lecture Hall B / 10:35

Deep learning for effective analysis
of high content screening
Adriana Borowa

Session 4 [ Lecture Hall A [ 14:30

Efficient fine-tuning of LLMs: exploring
PEFT methods and LORA-XS insights
Klaudia Batazy

Session 5 [ Lecture Hall B [ 14:30

Current trends in intrinsically
interpretable Deep Learning
Dawid Rymarczyk

Neural rendering: the future of 3D
modeling
Przemystaw Spurek

Check out
our other talks Saturday:
during ML in PL!

Session 7 [ Lecture Hall A [ 12:00

AdaGlimpse: Active Visual Exploration
with Arbitrary Glimpse Position and Scale

Adam Pardy!
PR JAGIELLONIAN Session 8 [ Lecture Hall B [ 12:00
@l UNIVERSITY . . .
AY N KRAKOW Augmentatu.)n-awar.e.Self-supgrwsed Learning
with Conditioned Projector

IR of machine Marcin Przewiezlikowski

= |learning research
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Senior Data Scientist
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