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Phenotypic screening: introduction
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Target vs phenotypic screening

Source: Singh, Vijay & Seed, Thomas & Ayodele, Okedele. (2019). Drug discovery strategies for acute radiation syndrome. Expert Opinion on Drug Discovery. 14. 
1-15. 10.1080/17460441.2019.1604674. 



Data: High Content Screening
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Acquisition

Source: https://www.oru.se/english/research/research-projects/rp/?rdb=p2550



Data: High Content Screening

Red: nucleus

Green:  plasma membrane
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2-dye assay for inflammation assessment

Source: Borowa et al. Weakly-Supervised Cell Classification for Effective High Content Screening, ICCS 2022 

Control

Inflammation



Data: High Content Screening

• 6 stains

• 5 channels

• 8 cellular components
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Cell Painting

Source: https://jump-cellpainting.broadinstitute.org/



Data: Challenges

1. Large amounts of data: needle in a haystack

2. Standardization and reproducibility 

3. Imbalanced datasets and lack of labels

4. Interpretability 

5. Complexity of data and off-targets
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Source: https://www.rxrx.ai/
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8Source: Chandrasekaran et al. JUMP Cell Painting dataset: morphological impact of 136,000 chemical and genetic perturbations 
https://www.biorxiv.org/content/10.1101/2023.03.23.534023v2.full.pdf

>126 TB
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9Bray et al. A dataset of images and morphological profiles of 30 000 small-molecule treatments using the Cell Painting assay GigaScience, Volume 6, Issue 12, 
December 2017, giw014, https://doi.org/10.1093/gigascience/giw014

Public labels for the dataset of 
30,000 compounds
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Source: https://cellprofiler.org/
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Source: https://idea-bio.com/automating-toxicology-studies-high-content-screening/



Applications
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Hit identification

Source: Adamski et al. AI-driven identification of hits from Cell Painting based screening, Cytodata 2023
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Applications
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Hit identification

Source: Bracha et al. AI-driven method for identification of hits from phenotypic screening with Cell Painting Assay, SLAS Europe 2023
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Applications
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Property prediction
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Applications
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Applications

16

Image representation

Source: Borowa et al. Decoding phenotypic screening: A comparative analysis of image representations, 
Computational and Structural Biotechnology Journal, Volume 23, 2024



Applications

17

Phenotype induction: compound library screening

Source: Gaiński et al. Artificial Intelligence enriches phenotype-guided Virtual Screening and proposes diverse hit candidates, SLAS 2023



Applications
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Phenotype prediction from molecule

Source: Yang et al., Mol2Image: Improved Conditional Flow Models for Molecule to Image Synthesis, CVPR 2021



Summary

● Scalability and efficiency: Deep Learning methods accelerate 

analysis of massive amounts of data generated for phenotypic 

screening

● Cost and time reduction

● Problem of small amount of labeled public data persists

● There is still a way to go for interpretability
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Friday:
Session 2 / Lecture Hall B / 10:35

Deep learning for effective analysis 
of high content screening

Adriana Borowa

Session 4 / Lecture Hall A / 14:30

Efficient fine-tuning of LLMs: exploring 
PEFT methods and LORA-XS insights 

Klaudia Bałazy

Session 5 / Lecture Hall B / 14:30

Current trends in intrinsically 
interpretable Deep Learning

Dawid Rymarczyk 

Neural rendering: the future of 3D 
modeling

Przemysław Spurek

Saturday:
 

Session 7 / Lecture Hall A / 12:00

AdaGlimpse: Active Visual Exploration 
with Arbitrary Glimpse Position and Scale 

Adam Pardyl

Session 8 / Lecture Hall B / 12:00

Augmentation-aware Self-supervised Learning 
with Conditioned Projector 

Marcin Przewięźlikowski

gmum.net

Check out 
our other talks 

during ML in PL!



Thank you!
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