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RNA vs protein

Domain background.

Our approach

Agenda Generative Graph Neural Network for RNA

structure prediction.




protein.




RNA vs protein

4 nucleotides in RNA
VS
20 aminoacids in protein

Cytosine Guanine

Uracil Adenine




7 degrees of freedom

7 torsion angles in RNA 2 torsion angles in protein

Peptide plane

Bernard, C., Postic, G., Ghannay, S., & Tahi, F. (2024). RNA-TorsionBERT: http://cib.cf.ocha.ac.jp/bitool/DIHED2/
leveraging language models for RNA 3D torsion angles prediction.


http://cib.cf.ocha.ac.jp/bitool/DIHED2/

AlphaFold2 architecture
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Jumper et al. (2021) Highly accurate protein structure prediction with AlphaFold.

Nature 596, 583-589 (doi: 10.1038/s41586-021-03819-2)



Nobel prizes in 2024

Victor Ambros and Gary Ruvkun for their David Baker for for computational protein
discovery of microRNA (miRNA) and its design, Demis Hassabis and John M. Jumper
function in the post-transcriptional regulation of Google DeepMind for protein structure

of genes. prediction.
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Why is it so difficult to predict RNA 3D structure?

IRNA: 8118

Protein (221,787)
@ DNA (11,427)
RNA (8,118)
@ NA-hybrid (281)
Other (8)




Why is it so difficult to predict RNA 3D structure?

10,000 <
7,900 +

2,000 -

structures




Challenges

The key challenges which hinder the
researchers from developing the
AlphaFold for RNA.

Schneider et al. (2023) When will RNA
get its AlphaFold moment?, Nucleic
Acids Research 51, 9522-9532 (doi:
10.1093/nar/gkad726)

RNA content in the Protein
Data Bank

The number of high-resolution
experimentally determined

protein structures is about 100
more abundant than for RNAs.

Sequences and sequence
alignments

MSA is a powerful strategy for
structure prediction (both RNA
and protein). Creating high-
quality RNA alignments is
difficult and often requires the
manual work of an expert.






Local 3D RNA descriptors
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Local 3D RNA descriptors (2)

How we constructed the datasets

1,564 RNA 3D
structures from PDB
(time-stamped
March 2023)
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m Local 3D RNA descriptors recur in non-homologous structures, indicating that similar local environments are found across diverse RNAs.
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Our model

Denoised
structure

Next iteration
Bx
Transformer
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RNA language
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RNA 3D structure representation

All-atom structure Coarse-grained mode|
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Graph Neural Network

Next iteration

Point cloud

User input
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RNA 3D structure representation




RNA language

Next iteration
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G:0.21,0.37...
C:0.47, 0.16...
G: 0.53,0.42...
C:0.78, 0.36...
Nucleotides represented
as vector embeddings
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Our method vs. AlphaFold3

Next iteration
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Results

RNAgrail
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Results (2)




summary

Using local 3D RNA descriptors is a novel
approach in the RNA 3D structure prediction
domain.

Our generative method predicts reliable RNA 3D
structures without relying on structural templates.

Embeddings derived from the RNA language
model significantly increase the model
performance.

This model can be further extended to bigger
structures

User defined 2D structure is a useful feature for
domain experts.



RNAgrail: graph neural network and diffusion model
for RNA 3D structure prediction
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GitHUb Abstract

The function of RNA is intrinsically tied to its 3D structure traditionally explored
by X-ray crystallography. NMR., and Crvo-EM. However, these experiments often
lack atomic-level resolution, creating the need for accurate in silico RNA structure

prediction tools. This need has driven advances in artificial intelligence (Al), which

N e u rI Ps 2 4 wo r ks h o ps has already revolutionized protein structure prediction. Unfortunately, similar
breakthroughs in the RNA field remain limited due to sparse and unbalanced

structural data. Here, we introduce RNAgrail. a novel RNA 3D structure prediction

H H H H method that focuses on RNA substructures using a denoising diffusion probabilistic

R NAg rai I WAS Occepted for MGChlne Leq rnlng N model (DDPM). Unlike AlphaFold 3 (AF3), {'ﬁﬂ.‘ii.ljlirﬁi b; many to g& an oracle,
° BMAgrail allows expert users o defineg base pair constraints, offering superior

St ructu ral B|0|ogy WO rkS ho p at Neurl Psz4. flexibility and precision. Our method outperformed AF3 by 12% in terms of mean
EMSD and by 24% in terms of mean eRMSD. Additionally, it perfectly reproduced

the canonical secondary structure outperforming Af3 by 40% in terms of interaction

network fidelity (INF). RNAgrail demonstrated robustness across diverse RNA

molifs and families. Despite being trained exclusively on rRNA and tRNA., it

effectively generalizes to new RNA families, thus. addressing one of the major

challenges in RNA 3D structure prediction. These results underscore the potential

of focusing on small RNA components and integrating user-defined constraints to

significantly enhance RNA 3D structure prediction, setting a new standard in RMNA
modeling.

Introduction

Ribonucleic acid (RNA) 15 fundamental to a wide range of biological processes across all living
organisms. It plays a critical role in gene transcription regulation, protein synthesis, and many other
cellular functions. RNA also constitutes the genetic material of some pandemic-causing viruses,
including HIV and SARS-CoV-2. In medicine, this molecule serves as a valuable biomarker for
cancer detection and a target in cancer therapeutics [36, 38]. Understanding the full spectrum of
RMA functions is based heavily on structural studies, with a particular focus on deciphering the
three-dimensional shape of this molecule.
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