

Fake it till you make it: planning chemical syntheses for drug discovery

Krzysztof Maziarz Microsoft Research Al for Science

Microsoft Research

Synthesis: cooking with molecules

Synthesis: cooking with molecules

Synthesis planning

Synthesis planning

[1] Maziarz et al, "Learning to Extend Molecular Scaffolds with Structural Motifs", ICLR 2021

[1] Maziarz et al, "Learning to Extend Molecular Scaffolds with Structural Motifs", ICLR 2021

•••

[2] Maziarz et al, "Re-evaluating Retrosynthesis Algorithms with Syntheseus", Faraday Discussions 2024

Single-step reaction prediction

Single-step reaction prediction

Main approaches:

- *end-to-end* \rightarrow e.g. unconstrained Transformer
- *symbolic* \rightarrow e.g. predicting the graph edit

Encoder-Decoder Transformer

Encoder-Decoder Transformer

Top-k single-step prediction accuracy

Top-k single-step prediction accuracy

GNN Encoder

Top-k single-step prediction accuracy

90% 80% + template encoder & localization 70% -60% 50% 40% 3 5 10 20 50 k

Top-k single-step prediction accuracy

Hidden trade-offs

Hidden trade-offs

Hidden trade-offs

$$\operatorname{score}(r) = \sum_{i=1}^{m} \sum_{k=1}^{k_{max}} \mathbb{1}[r = r_{i,k}] \cdot \theta_{i,k} \qquad \qquad \mathcal{L}_{rank}(r^+, r^-) = \sigma\left(\frac{\operatorname{score}(r^-) - \operatorname{score}(r^+) + \epsilon}{T}\right)$$

Top-k single-step prediction accuracy

Acknowledgements:

Guoqing Liu (MSR) Marwin Segler (MSR) Hubert Misztela (Novartis) Aleksei Kornev (Novartis) Holger Hoefling (Novartis) Mike Fortunato (Novartis) Rishi Gupta (Novartis) Austin Tripp (U Cambridge) Piotr Gaiński (Jagiellonian U)

Questions

We believe deep learning will have a transformational impact on the natural sciences

To learn more about Microsoft Research AI for Science, visit <u>aka.ms/AI4Science</u>

Amsterdam, Netherlands

Cambridge, UK

Beijing, China

Berlin, Germany

Redmond, USA

Shanghai, China

Backup slides

Beyond ground truth: verification via forward model

Backward model

Forward (verification) model

Beyond ground truth: verification via forward model

Acceptance rate by forward model

Beyond ground truth: verification via forward model

Acceptance rate by forward model