

FUNDED BY

Ministry of Culture and Science of the State of North Rhine-Westphalia

Uncertainty aware SSL on multi-dimensional time series for animal behavior

France Rose, Ph.D. Data Science of Bioimages, Prof. Bozek University of Cologne, Germany

Video Pose Estimation

Motion Capture Systems

France ROSE

[Günel et al. ELife 2019](https://doi.org/10.7554/eLife.48571). [Mathis et al.](https://doi.org/10.1038/s41593-018-0209-y) Nat. Neuro. 2018. [Dunn et al. Nat. Met. 2021](https://doi.org/10.1038/s41592-021-01106-6). [Ignatowska-Jankowska et al. BioRxiv 2023](https://doi.org/10.1101/2023.06.25.546437). 2

- Missing keypoints in behavior analysis are dropped
- Existing imputation methods for general time series
- But no method developed or tested at large scale on skeleton data

Unsupervised training and testing scheme

Tested algorithms

- Linear interpolation (Baseline)
- 5 different Neural Networks
	- Recurrent neural network (GRU)
	- Temporal Convolutional Network (TCN)
	- Graph Convolutional Networks
		- Spatio-temporal GCN
		- Space-Time-Separable GCN
	- Custom Transformer (DISK)

DISK architecture

Usual projection "Flattened" projection

time

France ROSE [Zerveas et al. arXiv 2020](https://arxiv.org/abs/2010.02803)

Datasets

- 7 datasets
- 5 species
- 2D and 3D
- 1 to 2 animals

France ROSE

[O'Shaughnessy et al. bioRxiv 2024](https://www.biorxiv.org/content/10.1101/2023.11.21.567896v1). [Dunn et al. Nat. Met. 2021](https://www.nature.com/articles/s41592-021-01106-6). [Günel et al. eLife 2019.](https://elifesciences.org/articles/48571) [Ignatowska-Jankoska et al. bioRxiv 2023.](https://www.biorxiv.org/content/10.1101/2023.06.25.546437v1) [Sun et al. NeurIPS 2021.](https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/7f1de29e6da19d22b51c68001e7e0e54-Paper-round1.pdf) [CMU MoCap database.](http://mocap.cs.cmu.edu/)

Performance on the 7 datasets

Comparison with methods used in behavior analysis

Real gaps, no ground truth

Trusting a black box model?

- Estimate the quality of the imputation
- Control the quality of the output dataset

Adding a probabilistic head

$$
\text{Uniform}:\{u \in \mathbb{R}^3 \mid \alpha \in \mathbb{R}^3\}
$$

Negative log-likelihood loss: $\sum_{\{k,t\}} \frac{1}{2} (\chi_{\textrm{GT}} - \mu) / \sigma^2 - \log(\sigma)$

 $X N$

[Hugging face probabilistic transformer for forecasting](https://huggingface.co/blog/time-series-transformers)

Estimated error on the imputed samples

Estimated error on the imputed samples

point + estimated error
prediction per sample

Uncertainty aware models

- Other tested approaches:
	- Ensemble
	- Variants of dropout
	- Additional branch to predict the estimated error
- Lower Pearson correlation, uncalibrated estimated error wrt real error
- Probabilistic head works better with transformer than GRU

What does DISK learn?

Imputation = masking task in Self-Supervised Learning

Masked Image Models

Context Encoder

ADIOS

Random Forest on latent vectors 4-action class classification

- balanced accuracy: 0.877
- balanced F1-score: 0.846
- balanced precision score: 0.874

What to do with DISK? An example:

Step detection in freely moving mice

Step detection in 3D Motion Capture mouse data

Insight on pharmacological drug effect

Concluding remarks

- DISK is able to impute correctly long gaps for single or multiple missing keypoints.
- An estimated error helps filtering out below-threshold imputed samples.
- Complementary to pose detection, DISK can help analyze fine movements like locomotion.

FUNDED BY

Ministry of Culture and Science of the State of North Rhine-Westphalia

Katarzyna Bozek France Rose

Timon Blindauer Monika Michaluk

Talmo D. Pereira

Liam O'Shaughnessy

Greg J. Stephens Bogna Ignatowska-Jankowska Marylka Y. Uusisaari

Neural methods robust to increasing gap length

Estimated error on the imputed samples

- Good correlation between real and estimated error - Good correlation between real and estimated error - We are the real error - Use it to threshold and keep only good samples
- Red line is x=x: slight overestimate of the real error

Datasets' properties

0.50

 0.25

 0.00

200

length hole

300

100

400

500

- Increased input length + GRU is a better combination (less training time for better performance)

Better step detection with imputed data

TCN

(b) Encoder module

(c) Decoder module

Temporal Convolutional Networks for Action Segmentation and

Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition

STS-GCN

coding GCN. Bottleneck'ing the space-time cross-talk is realized by factoring the space-time adjacency matrix into the product of separate spatial and temporal adjacency matrices $A^{st} = A^{s}A^{t}$. A separable space-time graph convolutional layer l is therefore written as follows

$$
\mathcal{H}^{(l+1)} = \sigma(A^{s-(l)}A^{t-(l)}\mathcal{H}^{(l)}W^{(l)})
$$

space -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Separable learnable adjacency matrices in time and

Learnt A^s (layer 1, time 1)

 (2)

Learnt A^t (layer 1, head)

Bigger hidden size performs better (DF3D)

Binary input mask guides the network

