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Video Pose Estimation

Motion Capture Systems

2Günel et al. ELife 2019. Mathis et al. Nat. Neuro. 2018. Dunn et al. Nat. Met. 2021. Ignatowska-Jankowska et al. BioRxiv 2023. 

https://doi.org/10.7554/eLife.48571
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1038/s41592-021-01106-6
https://doi.org/10.1101/2023.06.25.546437
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- Missing keypoints in behavior 
analysis are dropped

- Existing imputation methods 
for general time series

- But no method developed or 
tested at large scale on 
skeleton data
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Unsupervised training and testing scheme
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Tested algorithms
- Linear interpolation (Baseline)

- 5 different Neural Networks

- Recurrent neural network (GRU)
- Temporal Convolutional Network (TCN)
- Graph Convolutional Networks

- Spatio-temporal GCN
- Space-Time-Separable GCN

- Custom Transformer (DISK)

5Yan et al. AAAI 2018. Sofianos et al. ICCV 2021. Zerveas et al. SIGKDD 2021. Grigsby et al.  arXiv 2021.

https://ojs.aaai.org/index.php/AAAI/article/view/12328
https://doi.org/10.1109/ICCV48922.2021.01102
https://doi.org/10.1145/3447548.3467401
http://arxiv.org/abs/2109.12218
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DISK architecture
Usual projection “Flattened” projection

https://arxiv.org/abs/2010.02803
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Datasets

- 7 datasets
- 5 species
- 2D and 3D
- 1 to 2 animals

O’Shaughnessy et al. bioRxiv 2024. Dunn et al. Nat. Met. 2021. Günel et al. eLife 2019. Ignatowska-Jankoska et al. bioRxiv 2023. Sun et al. NeurIPS 2021. CMU MoCap database.

https://www.biorxiv.org/content/10.1101/2023.11.21.567896v1
https://www.nature.com/articles/s41592-021-01106-6
https://elifesciences.org/articles/48571
https://www.biorxiv.org/content/10.1101/2023.06.25.546437v1
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/7f1de29e6da19d22b51c68001e7e0e54-Paper-round1.pdf
http://mocap.cs.cmu.edu/
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Performance on the 7 datasets
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Comparison with methods used in behavior analysis

Real gaps, no ground truth
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Trusting a black box 
model?

● Estimate the quality of the imputation

● Control the quality of the output dataset
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Adding a probabilistic head
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Output: X{k,t} ∈ℝ³ Output: (𝜇 ∈ℝ³, 𝜎 ∈ℝ³){k,t} 

Negative log-likelihood loss: 
⅀{k,t} ½(XGT - 𝜇) / 𝜎2 - log(𝜎)

L1-loss

Hugging face probabilistic transformer for forecasting

https://huggingface.co/blog/time-series-transformers
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Estimated error on the imputed samples
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Estimated error on the imputed samples
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Real error made by the model

y = x
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Uncertainty aware 
models

● Other tested approaches:

○ Ensemble

○ Variants of dropout

○ Additional branch to predict the 
estimated error

● Lower Pearson correlation, uncalibrated 
estimated error wrt real error

● Probabilistic head works better with 
transformer than GRU
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What does DISK learn?
Imputation = masking task in 

Self-Supervised Learning

Masked Image Models
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Exploring DISK learned representations

U-map of sequence embeddings
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Exploring DISK learned representations

U-map of sequence embeddings
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Exploring DISK learned representations
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Exploring DISK learned representations

Random Forest on latent vectors
4-action class classification
- balanced accuracy: 0.877
- balanced F1-score: 0.846
- balanced precision score: 0.874

20MABe challenge task 1

https://www.aicrowd.com/challenges/multi-agent-behavior-representation-modeling-measurement-and-applications/problems/mabe-task-1-classical-classification
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What to do with DISK? An example:
Step detection in freely moving 
mice
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Step detection in 3D Motion Capture mouse data
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Insight on pharmacological drug effect
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- DISK is able to impute correctly 
long gaps for single or multiple 
missing keypoints.

- An estimated error helps 
filtering out below-threshold 
imputed samples.

- Complementary to pose 
detection, DISK can help 
analyze fine movements like 
locomotion.

Github Preprint

Concluding remarks
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Talmo D. Pereira
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Neural methods robust to increasing gap length
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Imputing multiple keypoints simultaneously
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Estimated error on the imputed samples

Est
im

ate
d e

rro
r

- Good correlation between real and estimated error
- Red line is x=x: slight overestimate of the real error - Use it to threshold and keep only good samples

Number of remaining samples (based on threshold)

Me
an

 re
al 

err
or 

on
 th

e r
em

ain
ing

 sa
mp

les

FL2 - transformer NLL FL2 - GRU NLL

Real error made by the model Real error made by the model

Est
im

ate
d e

rro
r



France ROSE

Datasets’ properties
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Input sequence length

- Increasing input sequence length improves performance (see RMSE per timepoint or 
RMSE vs length_hole plots)

- Increasing input length is more beneficial to GRU than transformer (Weird!)
- Increased input length + GRU is a better combination (less training time for better 
performance)
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Better step detection with imputed data
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TCN

Temporal Convolutional Networks for Action Segmentation and Detection, Lea et al. 2016
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STS-GCN

2021

Separable learnable adjacency matrices in time and 
space
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Bigger hidden size performs better (DF3D)



France ROSE

Binary input mask guides the network

* Human


