

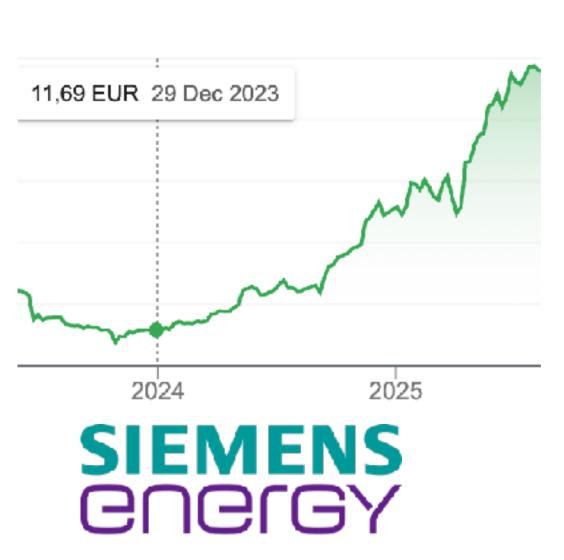
Content of this talk

- Al4Engineering (Al beyond LLMs)
- Reference models as the way forward
- I am giving my opinions which change over time and should not be taken too serious!

Disclaimer: This talk is very much centered around data-driven simulations! Might be transferable to other areas.

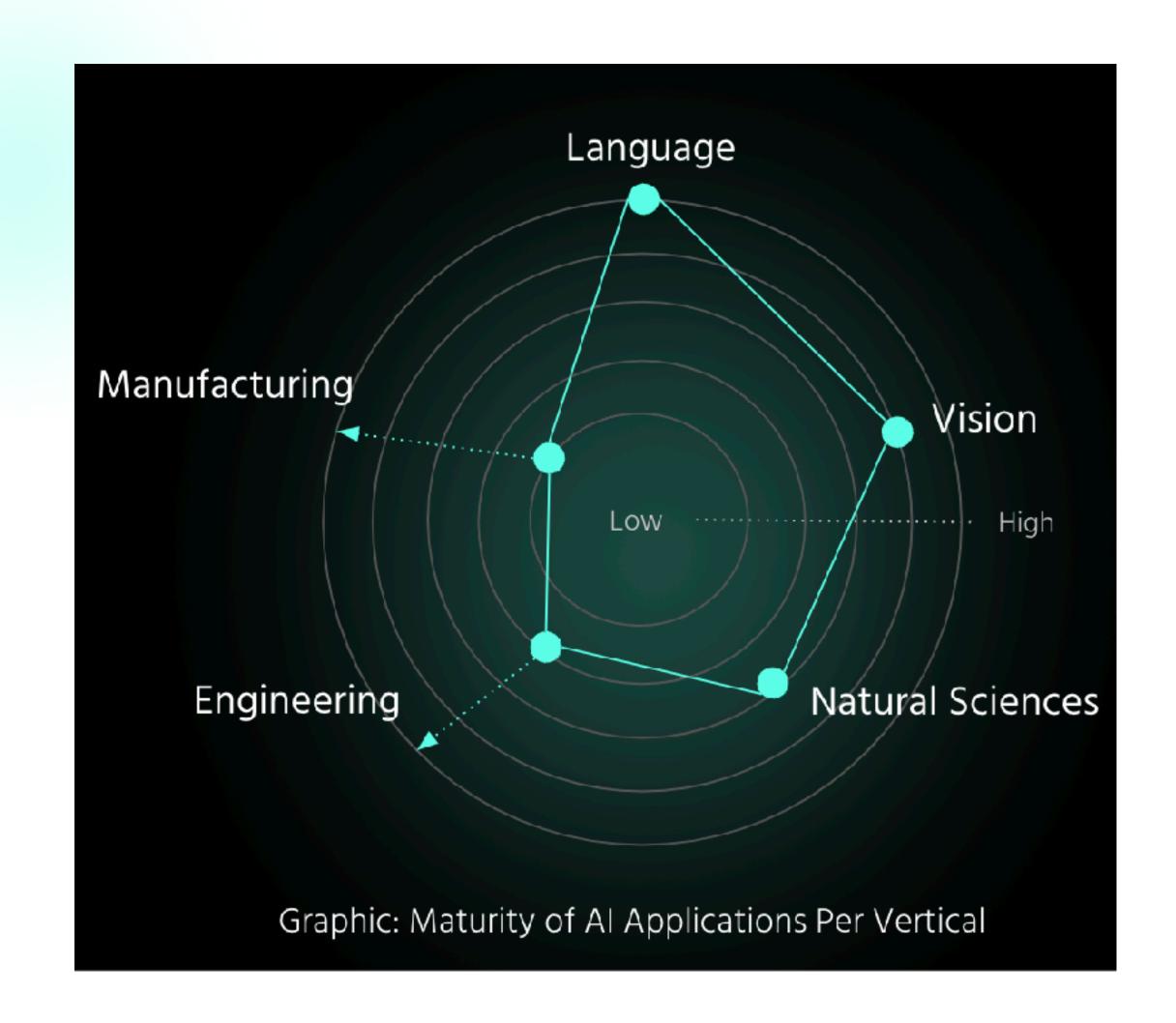
Status quo

- In the next five years, AI breakthroughs will be build on **Transformers** which run on **Nvidia GPUs** built at **TSMC** with **ASML** machines (which uses **Zeiss technology** and **Trumpf lasers**):
 - Al race is an intertwined global affair
 - Focus is on text, images, videos, ...
 - "Let's build things bigger and bigger and bigger until intelligence emerges"
- Big players built GPU centres with > 100k GPUs
 - Energy supply has silently become the next frontier
- OpenAl/Anthropic are valued 500/183 billion US dollars (and still far from profitable)
- Is there something else?



The elevator pitch for investors

- Al systems have been scaled up for language and vision applications with tremendous success.
- Many verticals remain untouched.
 - Manufacturing, engineering, logistics,...
 - And my personal bet: data-driven simulations, digital twins, ...



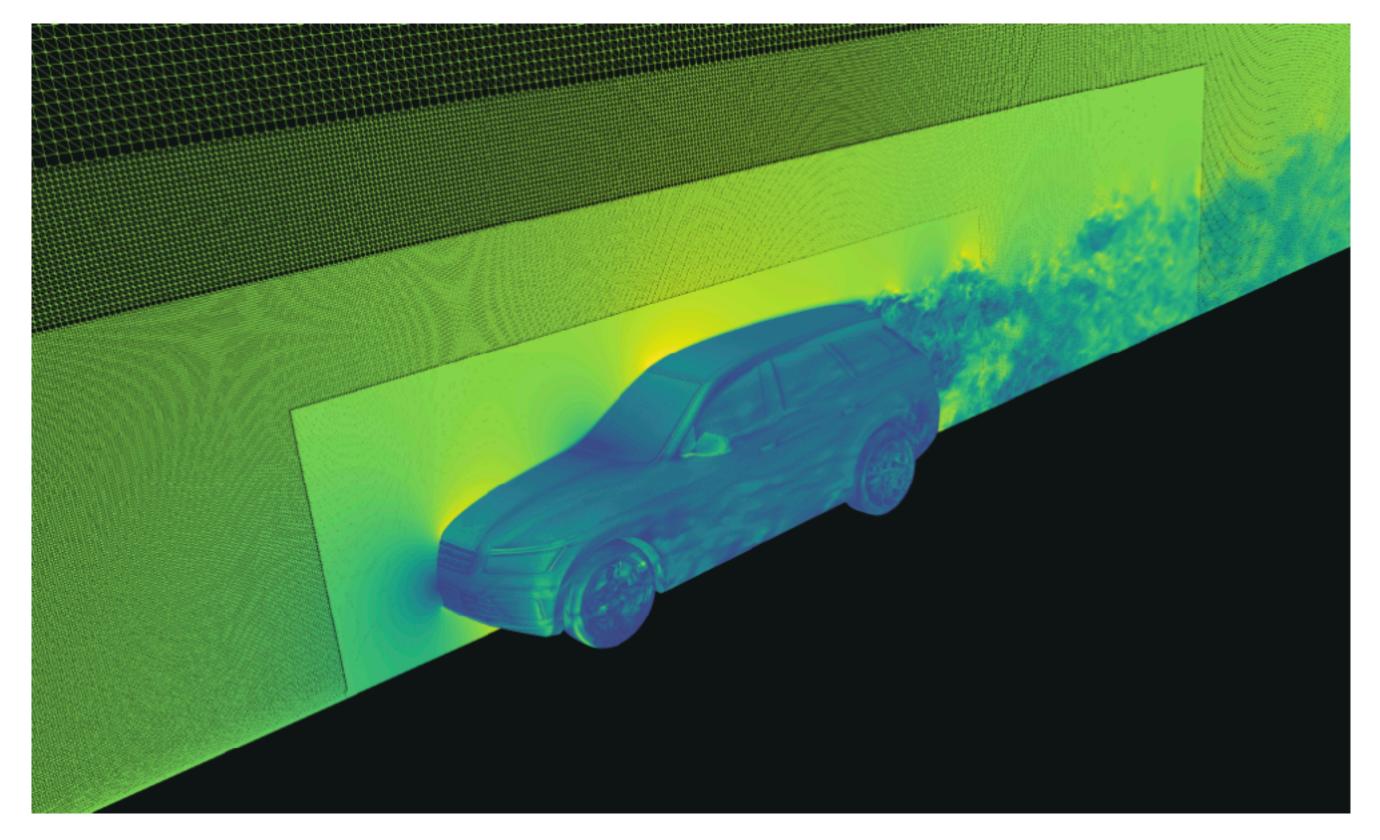
Reference models

- Foundation models are trained on internet-scale data:
 - GPT, Gemini, SAM
- Lots of claims on foundation models for physics:
 - One model for all physics?
- Reality is very different
- Reference models == foundation-like models far small, well-defined settings:
 - Weather, injection molding, external aerodynamics, semiconductors

Reference models

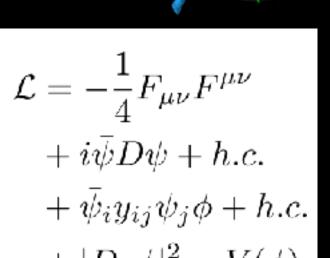
Let's make it a bit more haptic

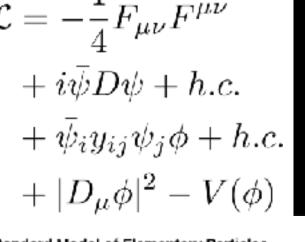
- Example CFD: turbulent / laminar flows, jets / wake flows / mixing layers, subsonic / transonic / supersonic, geometries, chemistry, multi-physics, ...
- We can write the input as something like $u_{\text{CFD}} = [u_{\text{geom}}, u_{\text{preprocess}}, u_{\text{boundary/initial}}, u_{\text{mesh}}, u_{\text{phys}}, u_{\text{discr}}]$
- To cover ALL CFD is nearly impossible
- We need to limit us to certain settings!



Nature is described by differential equations

Quantum Chemistry Particle Physics Classical Chemistry

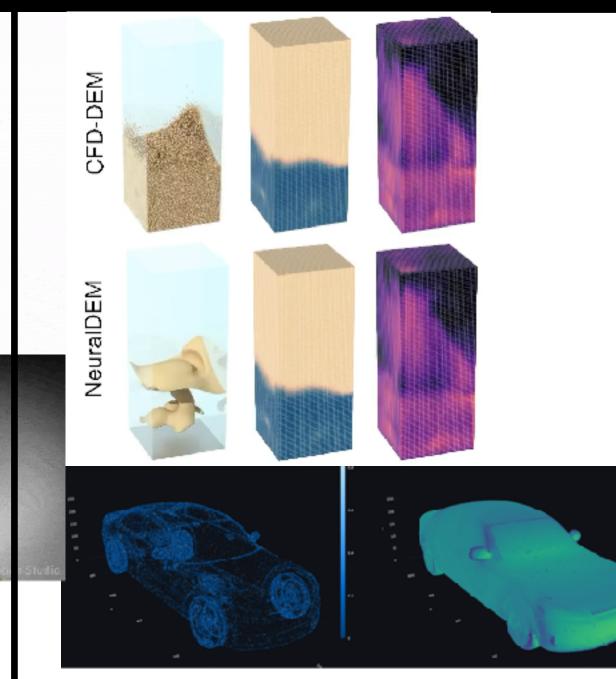




$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V(x)\Psi$$
 $\frac{\partial t}{\partial t} = v$

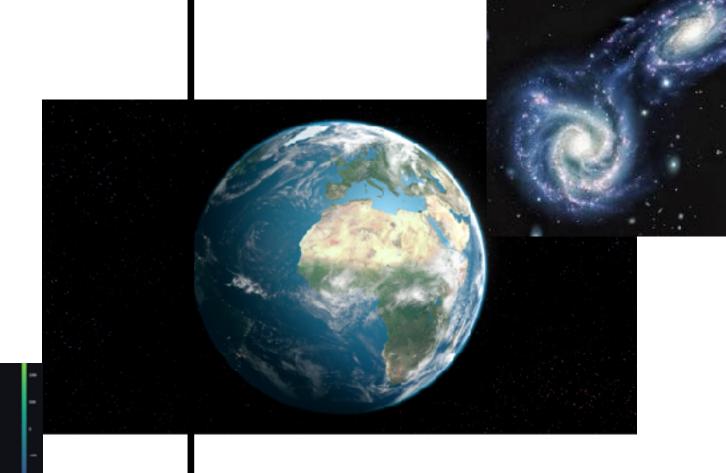
$$egin{aligned} rac{\partial oldsymbol{v}}{\partial t} &= -\gamma oldsymbol{v} + oldsymbol{A} \ rac{\partial oldsymbol{x}}{\partial t} &= oldsymbol{v} \end{aligned}$$

Fluid Dynamics



$$\frac{\partial \boldsymbol{u}}{\partial t} = \nu \Delta \boldsymbol{u} - (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \boldsymbol{f} - \nabla p$$
$$\nabla \cdot \boldsymbol{u} = 0$$

Astrophysics



$$G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

Numerical solutions for PDEs

We discretize space and time

• Formulation of a time-dependent PDE:

$$\partial_t \mathbf{u} = F(t, \mathbf{x}, \mathbf{u}, \partial_{\mathbf{x}} \mathbf{u}, \partial_{\mathbf{x}} \mathbf{u}, \dots) \qquad (t, \mathbf{x}) \in [0, T] \times \mathbb{X}$$

$$\mathbf{u}(t, \mathbf{x}) = \mathbf{u}^0(\mathbf{x}) \qquad \mathbf{x} \in \mathbb{X}$$

$$B[\mathbf{u}](t, \mathbf{x}) = 0 \qquad (t, \mathbf{x}) \in [0, T] \times \partial \mathbb{X}$$

- We discretize domain into grid:
 - Estimate the spatial derivatives, e.g. FDM
 - Use spatial estimates for time update (e.g., Euler update)

$$egin{aligned} f_x(x,y) &pprox rac{f(x+h,y) - f(x-h,y)}{2h} \ f_y(x,y) &pprox rac{f(x,y+k) - f(x,y-k)}{2k} \ f_{xx}(x,y) &pprox rac{f(x+h,y) - 2f(x,y) + f(x-h,y)}{h^2} \ f_{yy}(x,y) &pprox rac{f(x,y+k) - 2f(x,y) + f(x,y-k)}{k^2} \ f_{xy}(x,y) &pprox rac{f(x+h,y+k) - f(x+h,y-k) - f(x-h,y+k) + f(x-h,y-k)}{4hk} . \end{aligned}$$

Weather as an example

The Sputnik Pangu weather moment

November 2022

Article Open access Published: 05 July 2023

Accurate medium-range global weather forecasting with 3D neural networks

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu & Qi Tian ⊠

Nature 619, 533–538 (2023) Cite this article

286k Accesses | 1012 Citations | 1749 Altmetric | Metrics

Abstract

Weather forecasting is important for science and society. At present, the most accurate forecast system is the numerical weather prediction (NWP) method, which represents atmospheric states as discretized grids and numerically solves partial differential equations that describe the transition between those states. However, this procedure is computationally expensive. Recently, artificial-intelligence-based methods² have shown potential in accelerating weather forecasting by orders of magnitude, but the forecast accuracy is still significantly lower than that of NWP methods. Here we introduce an artificialintelligence-based method for accurate, medium-range global weather forecasting. We show that three-dimensional deep networks equipped with Earth-specific priors are effective at dealing with complex patterns in weather data, and that a hierarchical temporal aggregation strategy reduces accumulation errors in medium-range forecasting. Trained on 39 years of global data, our program, Pangu-Weather, obtains stronger deterministic forecast results on reanalysis data in all tested variables when compared with the world's best NWP system, the operational integrated forecasting system of the European Centre for Medium-Range Weather Forecasts (ECMWF)³. Our method also works well with extreme weather forecasts and ensemble forecasts. When initialized with reanalysis data, the accuracy of tracking tropical cyclones is also higher than that of ECMWF-HRES.

The evolution of Earth system prediction

the analytical age 1820s: Navier-Stokes equations formulated

1890s: Cleveland Abbe establishes theoretical basis for weather prediction

1904: Vilhelm Bjerknes outlines systematic approach to weather prediction

1917: Lewis Fry Richardson develops first numerical weather prediction methods

the numerical age 1922: Richardson publishes "Weather Prediction by Numerical Process"

1946: ENIAC computer developed, enabling first numerical calculations

1950: First numerical weather prediction by Charney, Fjørtoft, and von Neumann

1955: First operational numerical weather predictions

1960s: Global circulation models emerge

1975: ECMWF established, marking international collaboration

1979: First coupled ocean-atmosphere models

1983: European Centre's IFS model introduced

1990s: Ensemble prediction systems developed

the AI age

2018: First serious comparisons of AI vs physics models (Dueben and Bauer)

2019: AI models skillful to multiple days (Weyn et al.)

2020: WeatherBench starts to drive ML development (Rasp et al.)

2022: GNNs outperform GFS at 1° (Keisler)

2023: ClimaX demonstrates first foundation model principles

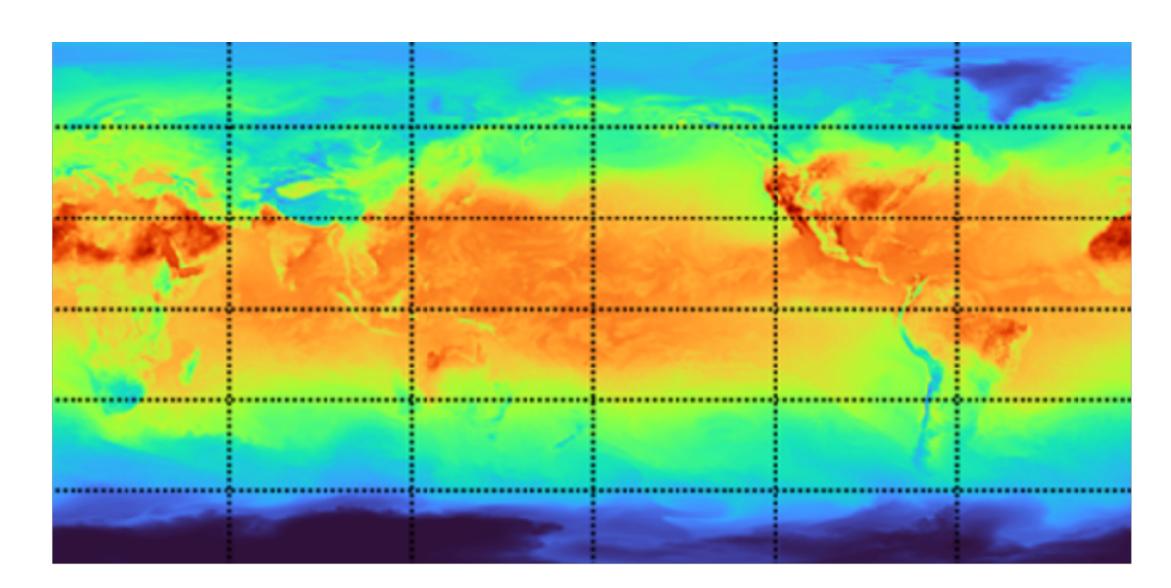
2023: Pangu-Weather outperforms HRES at 0.25° (Bi et al.)

2024: GenCast outperforms IFS ensemble (Price et al.)

2024: ECMWF launches AIFS, Microsoft Research launches Aurora

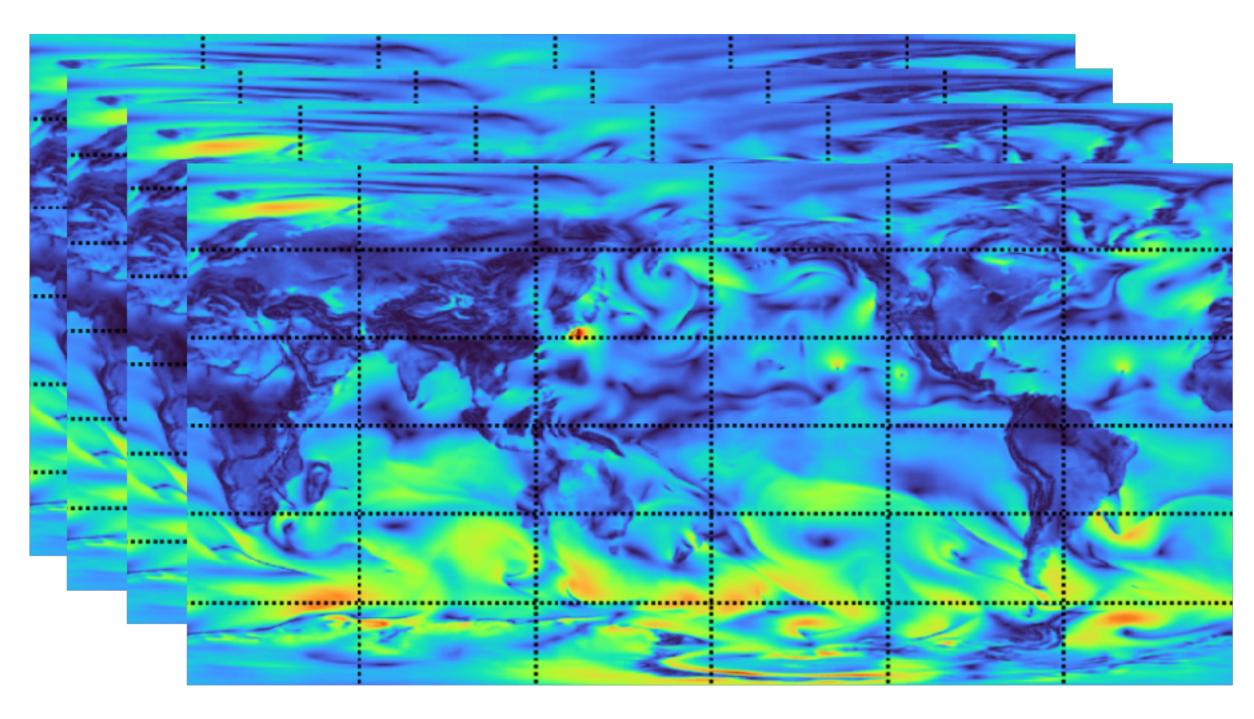
Weather data

Surface variable: temp 2m from the Earth's surface



Shape = $H \times W$

Atmospheric variable: wind speed



Shape = $L \times H \times W$

Why Earth science needs Foundation Models

1.Exabytes of data

- Multiple scales and modalities
- Observations: satellites, weather stations
- NWP: forecasts, analysis, reanalysis

2. Transfer learning opportunities

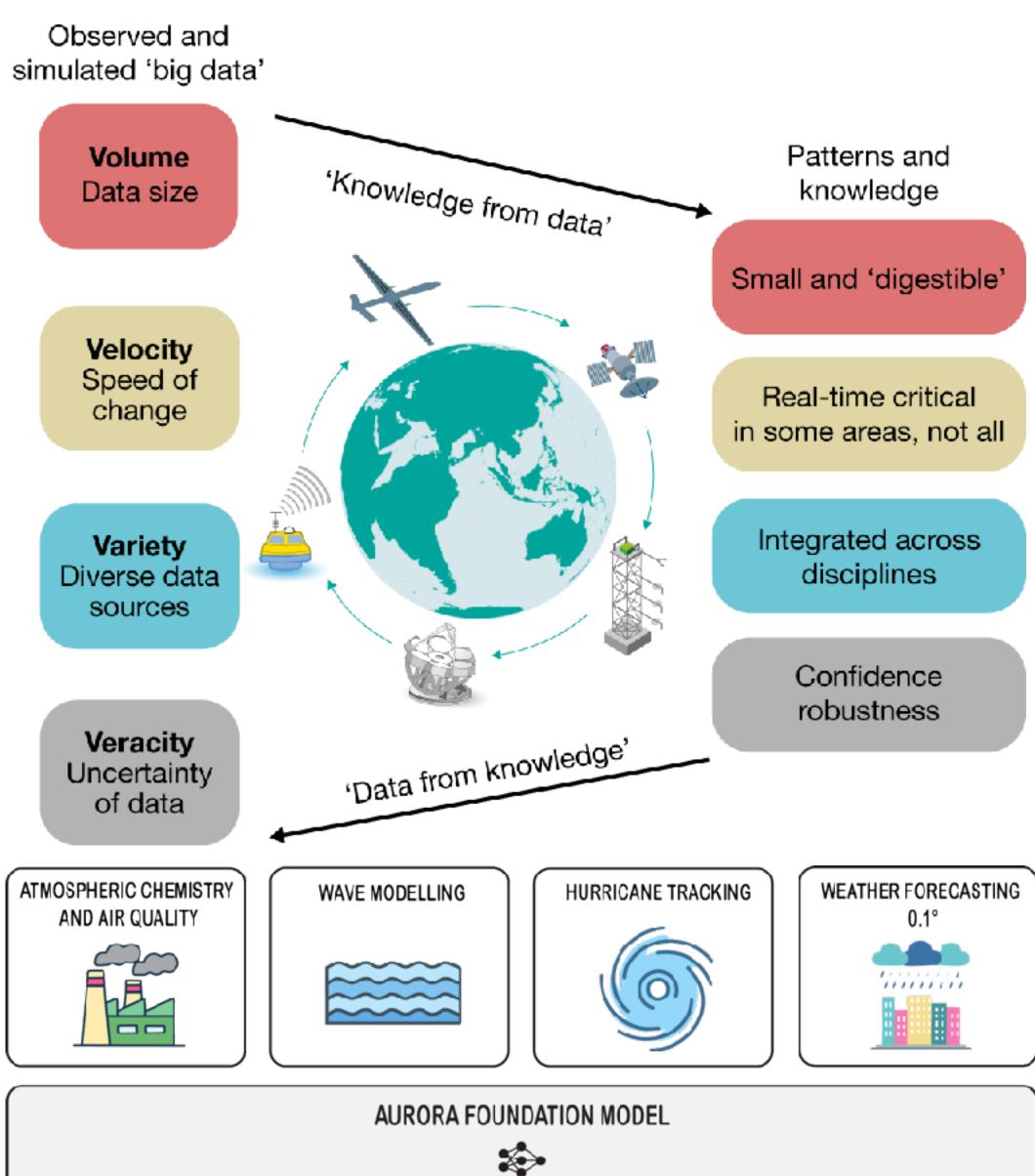
- Common physical principles
- Coupled interactions
- Effective in data scarce tasks

3. Compute & Infrastructure demands

- Current specialized AI models: limited scope
- Current NWP models: node-hours on supercomputers
- Foundation models:
 - 4-8 weeks development per fine-tuning task
 - Inference takes minutes on 1 GPU
 - Improved flexibility, performance, robustness
 - Unlocking new capabilities, sustainability!

Enter Aurora:

- Pre-trained 1PB of diverse data
- Fine-tuned to tackle diverse tasks
- Strong performance on operational evals



Pre-training

• Objective: Predict global state of any variables at any resolution 6h ahead

• Cost:

- 150,000 steps
- 32 A100s
- 3 weeks

Variable	Units	Description			
Surface-level meteorological variables					
$2\mathrm{T}$	K	Temperature at 2 m above surface of land or sea			
U10	${ m ms^{-1}}$	Eastward component of wind at 10 m			
V10	${ m ms^{-1}}$	Southward component of wind at 10 m			
WS	${ m ms^{-1}}$	Wind speed at 10 m; equal to $(U10^2 + V10^2)^{1/2}$			
MSL	Pa	Air pressure at mean sea level			
Atmospheric meteorological variables					
U	${ m ms^{-1}}$	Eastward component of wind			
V	${ m ms^{-1}}$	Southward component of wind			
${ m T}$	K	Temperature			
\mathbf{Q}	${ m kgkg^{-1}}$	Specific humidity			
Z	$\mathrm{m}^2\mathrm{s}^{-2}$	Geopotential			

			Pretraining Datasets				
Name	Resolution	Timeframe Surface Variables		Atmospheric Variables	Num levels	Size (TB)	Num frames
ERA5	$0.25^{\circ} \times 0.25^{\circ}$	1979-2020	2T, U10, V10, MSL	U, V, T, Q, Z	13	105.43	367,920
HRES-0.25	$0.25^{\circ} \times 0.25^{\circ}$	2016-2020	2T, U10, V10, MSL	U, V, T, Q, Z	13	42.88	149,650
IFS-ENS-0.25	$0.25^{\circ} \times 0.25^{\circ}$	2018-2020	2T, U10, V10, MSL	U, V, T, Q, Z	3	518.41	6,570,000
GFS Forecast	$0.25^{\circ} \times 0.25^{\circ}$	2015-2020	2T, U10, V10, MSL	U, V, T, Q, Z	13	130.39	560,640
GFS Analysis	$0.25^{\circ} \times 0.25^{\circ}$	2015-2020	2T, U10, V10, MSL	U, V, T, Q, Z	13	2.04	8,760
GEFS Reforecast	$0.25^{\circ} \times 0.25^{\circ}$	2000-2019	2T, MSL	U, V, T, Q, Z	3	194.02	2,920,000
CMCC-CM2-VHR4	$0.25^{\circ} \times 0.25^{\circ}$	1950-2014	2T, U10, V10, MSL	U, V, T, Q	7	12.6	94,900
ECMWF-IFS-HR	$0.45^{\circ} \times 0.45^{\circ}$	1950-2014	2T, U10, V10, MSL	U, V, T, Q	7	3.89	94,900
MERRA-2	$0.625^{\circ} \times 0.5^{\circ}$	1980-2020	2T, U10, V10, MSL	U, V, T, Q	13	5.85	125,560
IFS-ENS-Mean	$0.25^{\circ} \times 0.25^{\circ}$	2018-2020	2T, U10, V10, MSL	U, V, T, Q, Z	3	10.37	131,400
					Total	1,219.91	11,023,730

Fine-tuning task #1: Air pollution forecasting

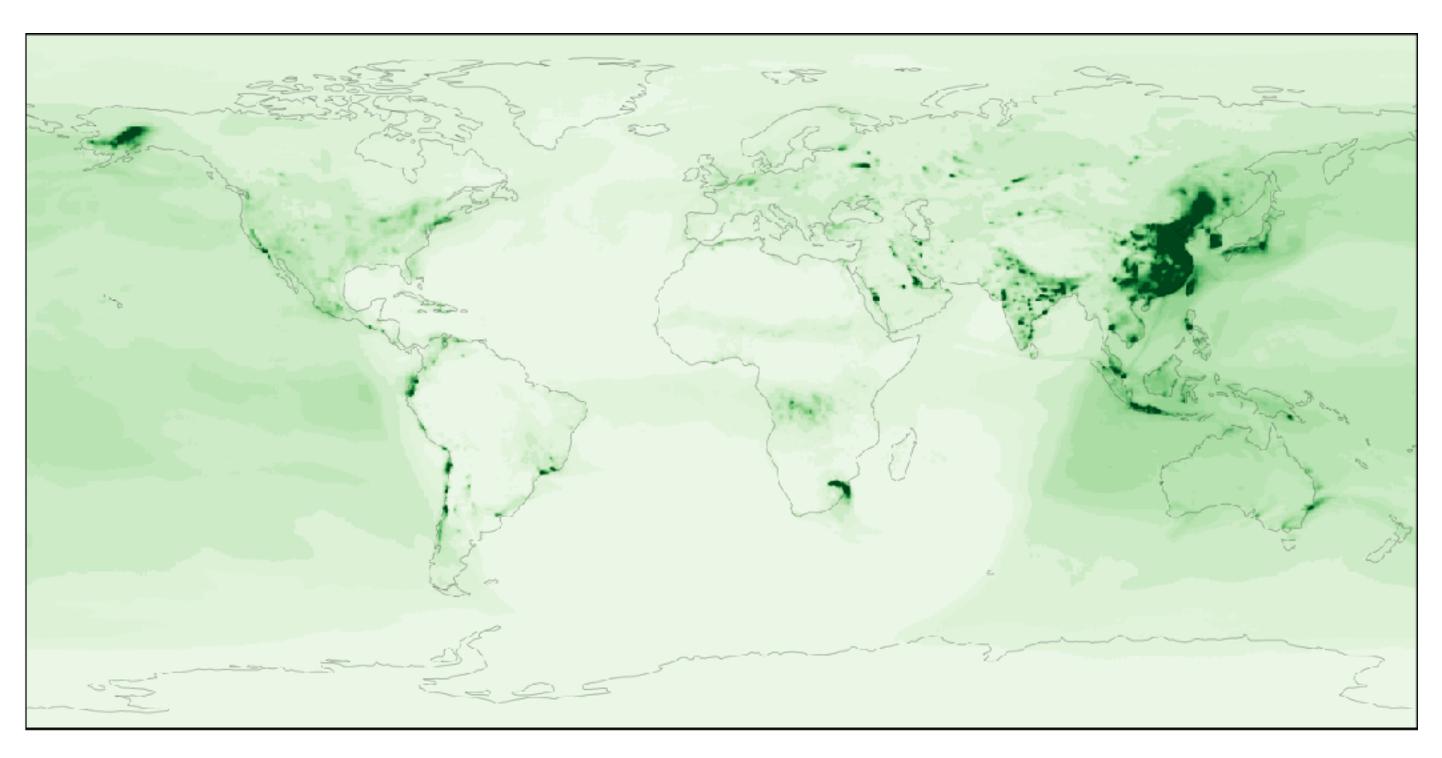
Setup: Model concentration of PM₁, PM_{2.5}, PM₁₀, CO, NO, NO₂, SO₂, O₃

Data: Copernicus Atmospheric Monitoring Service (CAMS) analysis, 0.4° resolution

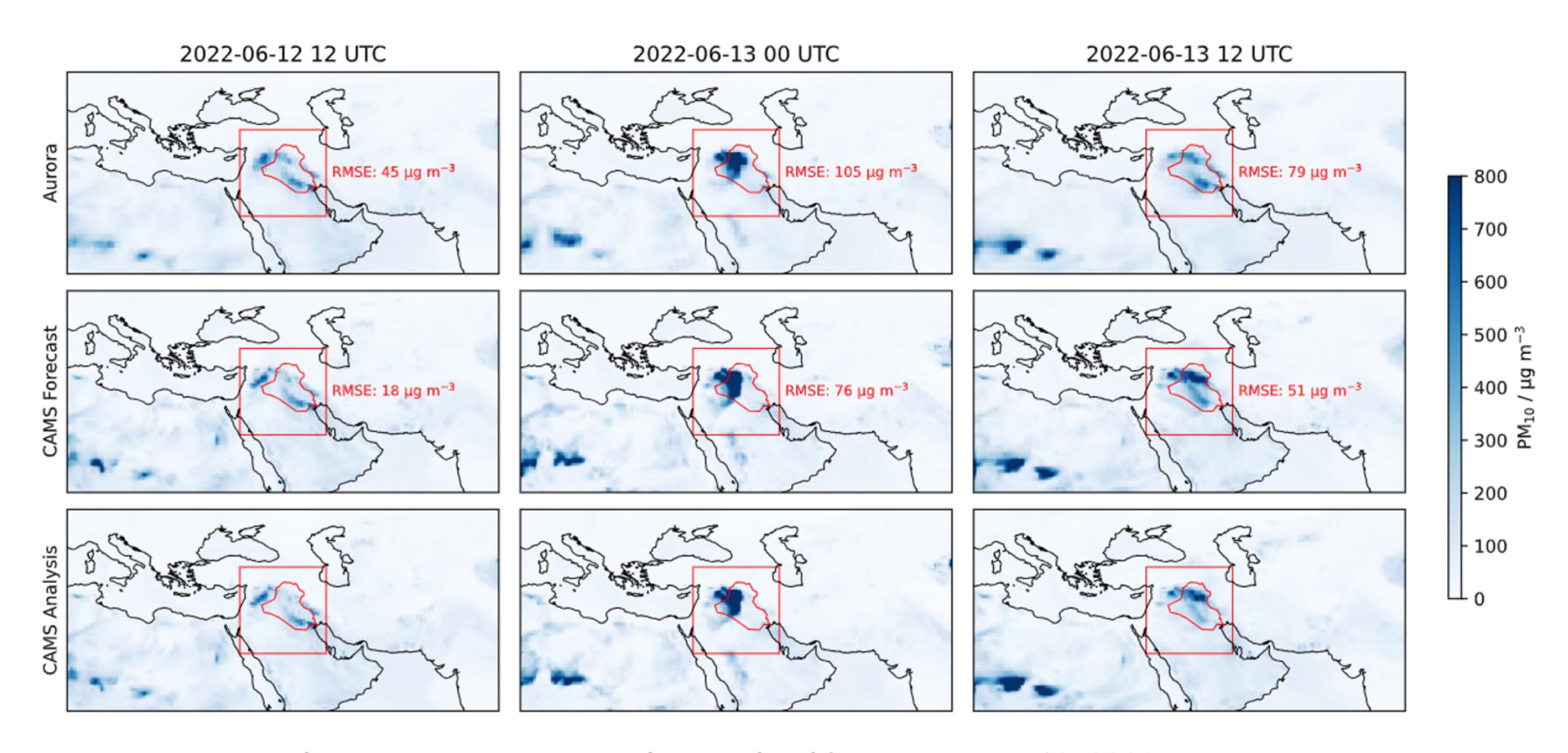
Baseline: Operational CAMS forecasts

Challenges:

- Adaptation to a new domain
- Data scarcity
- Non-stationary
- Lack of emission data



 NO_2 , like most variables in CAMS, is skewed towards high values in areas with high anthropogenic emissions. It also exhibits a strong diurnal cycle due to photolysis.



- Aurora accurately captures a severe sandstorm that hit Iraq on June 13, 2022.
- Initialization via CAMS analysis at 12 Jun 2022 00 UTC.

Fine-tuning task #2: Ocean wave forecasting

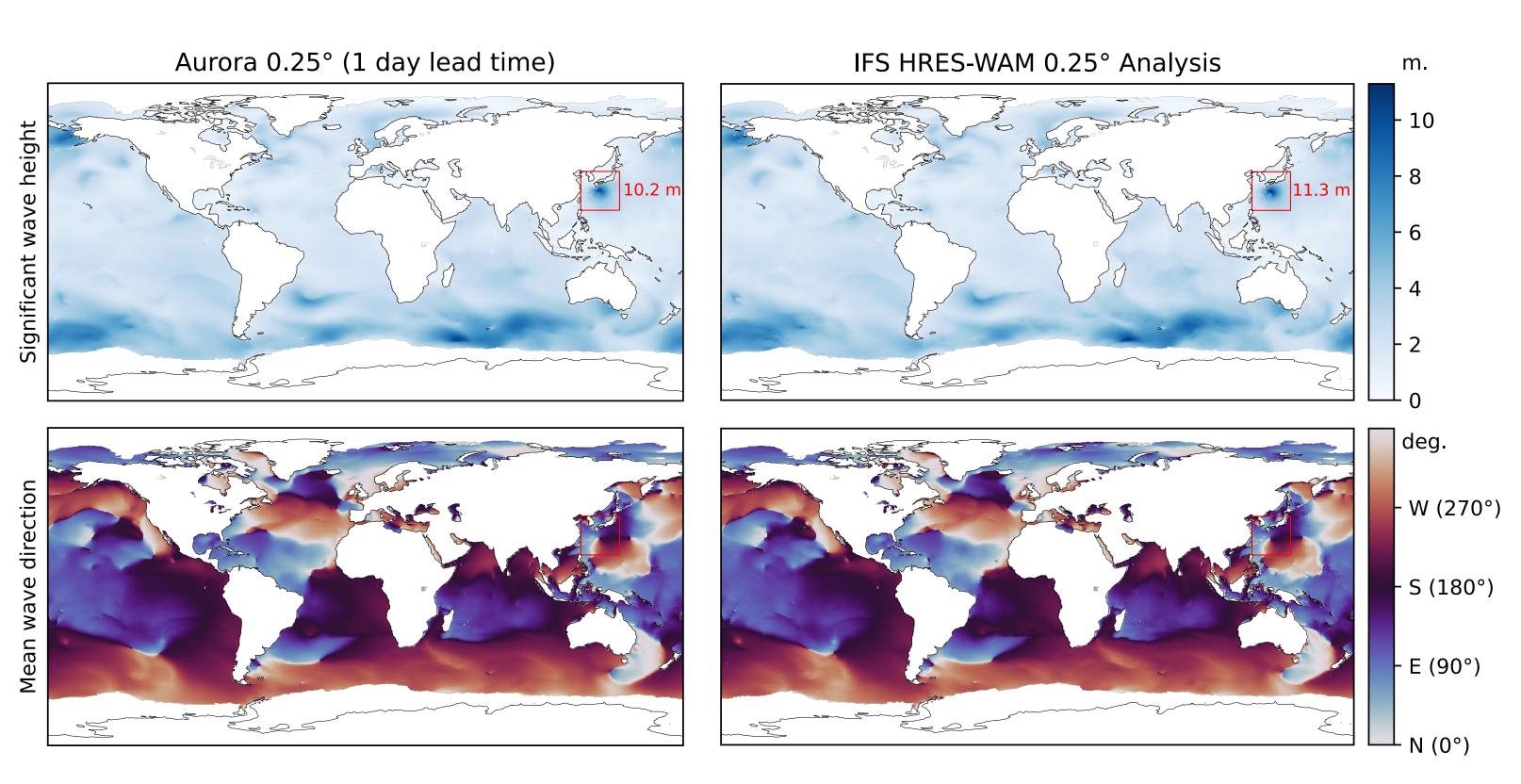
Setup: Model height, period, and direction of all wave components

Data: IFS HRES-WAM analysis, 0.25° resolution

Baseline: IFS HRES-WAM operational forecasts

Challenges:

- Adaptation to a new domain
- Data domain is not fixed (e.g., absence of swell, sea ice)
- How to model wave angles?



Aurora accurately predicts significant wave height and mean wave direction for Typhoon Nanmadol, the most intense tropical cyclone in 2022. The red box shows the location of the typhoon and the number is the peak significant wave height.

Fine-tuning task #3: High-resolution weather forecasting

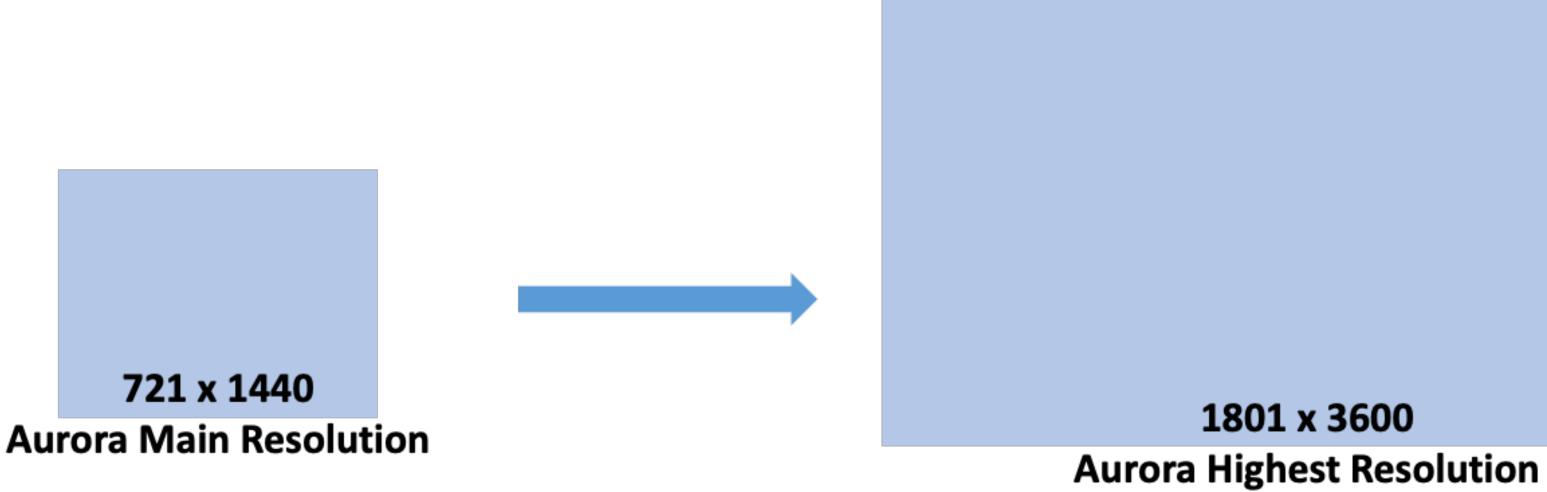
Setup: Model weather variables such as wind speed, temperature, specific humidity, etc.

Data: IFS HRES analysis, 0.1° resolution

Baseline: IFS HRES operational forecasts

Challenges:

- Adaptation to a new resolution
- Data scarcity
- Data complexity (~2GB per datapoint)



Storm Ciaran in Amsterdam



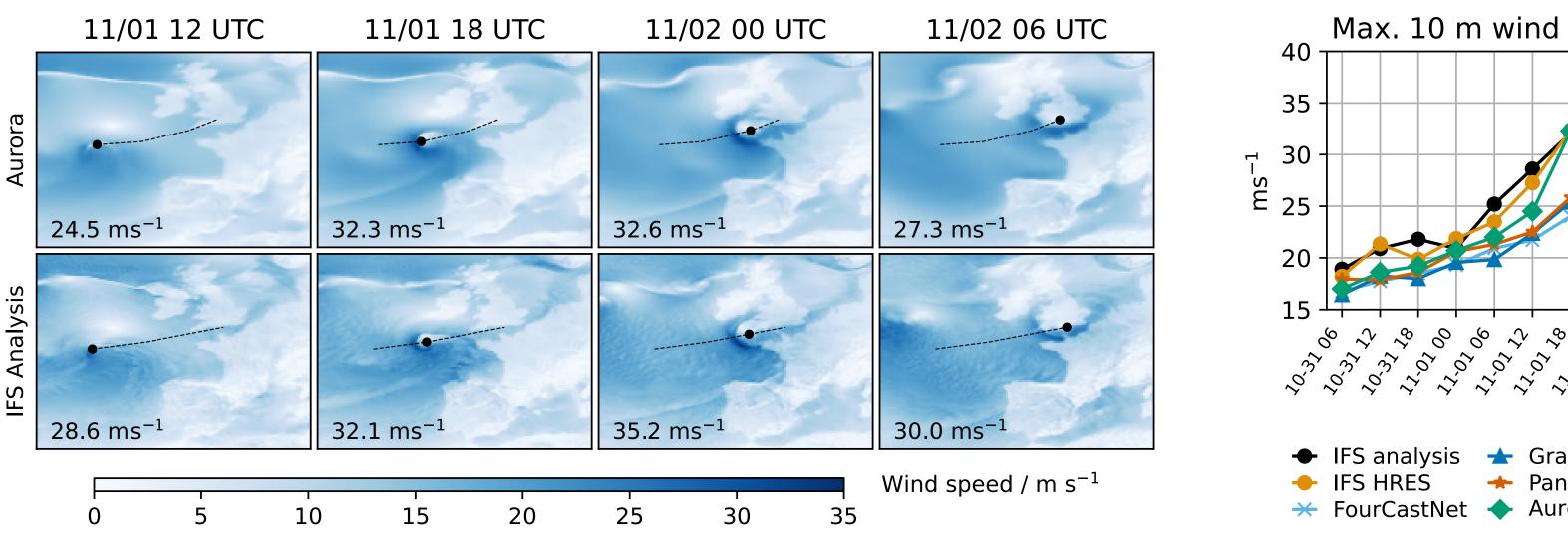
Setup: Model weather variables such as wind speed, temperature, specific humidity, etc.

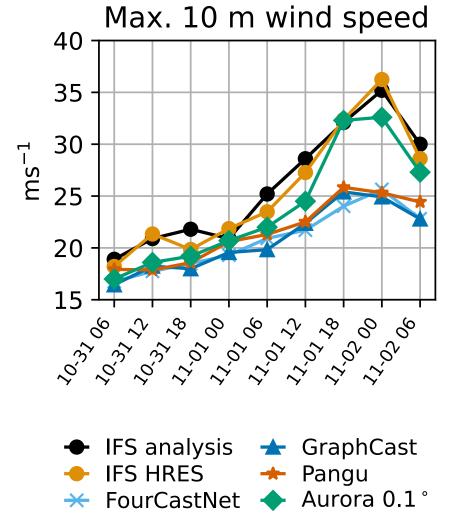
Data: IFS HRES analysis, 0.1° resolution

Baseline: IFS HRES operational forecasts

Challenges:

- Adaptation to a new resolution
- Data scarcity
- Data complexity (~2Gb per datapoint)



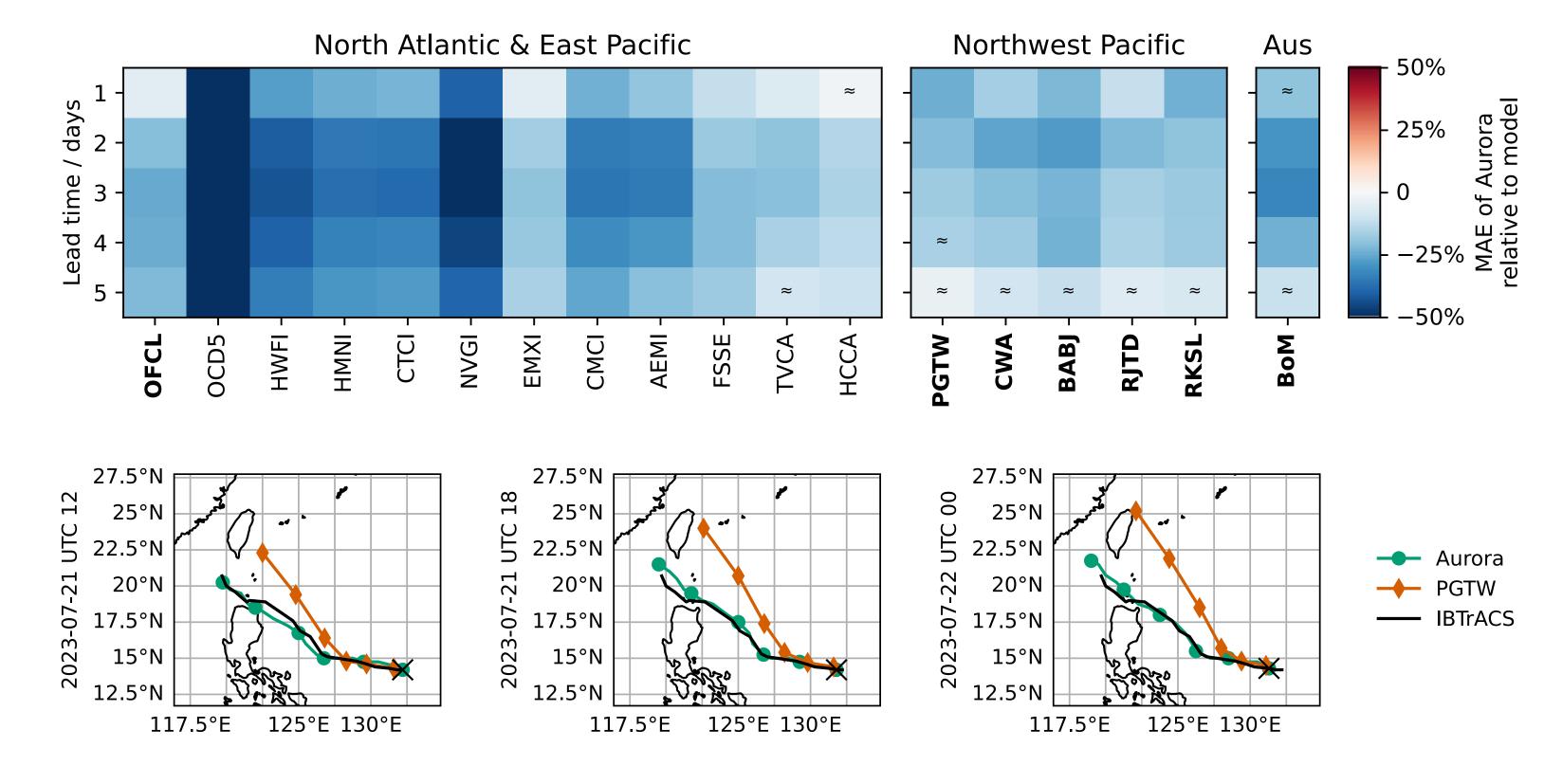


Charlton-Perez et al. (2024) showed that existing AIWP models were not able to capture the spike in maximum 10 m wind speed that occurs on 00 UTC 2 November 2023. Aurora is able to better match the IFS-HRES forecast of the sudden increase in 10 m wind speed.

Fine-tuning task #4: Tropical Hurricane Tracking

Data: Tropical hurricane tracks in 2023

Baselines: Operational forecasts issued by multiple centers worldwide



On 21 July, 2023 a tropical depression intensified into a tropical storm and was named Typhoon Doksuri. Doksuri would become the costliest Pacific typhoon to date, inflicting more than 28 billion USD in damage. Aurora correctly predicts that Doksuri will make landfall in the Northern Philippines, whereas PGTW predicts that it will pass over Taiwan.

• First AI model to outperform multiple operational centers in various regions.

Global medium-range weather forecasting

A breakdown of the success story

- Breakthroughs are obtained due to 3 reasons:
 - 1. **Model scale**: Vision Transformers / Swin Transformers have be proven as go-to method for 2D/3D vision applications): Pangu, Aurora, ...
 - 2. **Data scale**: ERA5 is a publicly available dataset which is easy-accessible and large enough. Aurora uses a plethora of similar datasets.
 - 3. **Tasks / Metrics**: MSE on next time step (6 hours ahead). We take a snapshot of the earth and predict 6 hours into the future. Tasks / metrics is the enabler route!

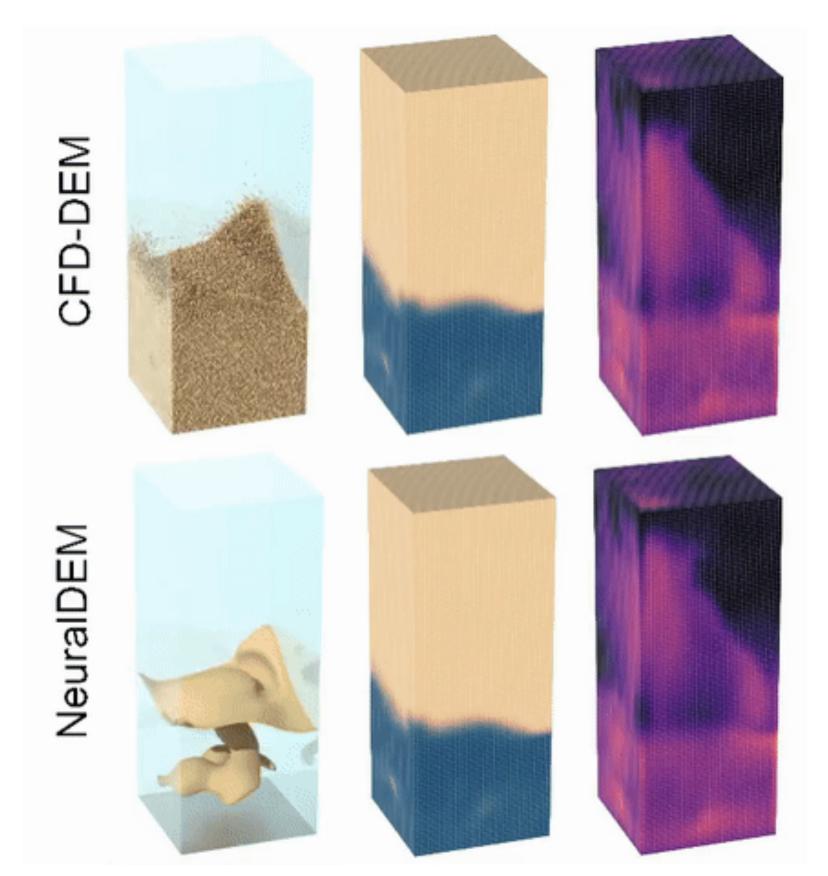
From weather to reference models for engineering

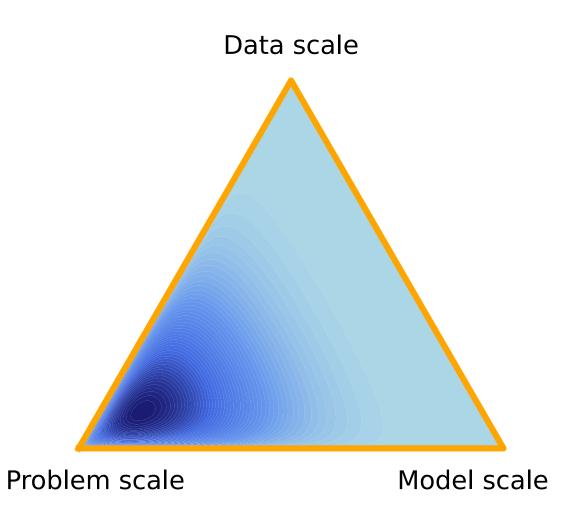
The elevator pitch for scientists

We are facing new unknown ML challenges

Multi-physics 500k particles, 200k mesh cells, 3D, coupled, transient

CFD 1 billion mesh cells, 3D Non-transient





Problem scale

We first need to build model frameworks that take the role of ViTs in weather modeling

Universal Physics Transformers: A Framework For Efficiently Scaling Neural Operators

Benedikt Alkin ^{1,2} Andreas Fürst ¹ Simon Schmid ³ Lukas Gruber ¹ Markus Holzleitner ⁴ Johannes Brandstetter ^{1,2}

ELLIS Unit Linz, Institute for Machine Learning, JKU Linz, Austria
 Emmi AI GmbH, Linz, Austria
 Software Competence Center Hagenberg GmbH, Hagenberg, Austria
 MaLGa Center, Department of Mathematics, University of Genoa, Italy, Austria {alkin, fuerst, brandstetter}@ml.jku.at

NeuralDEM – Real-time Simulation of Industrial Particulate Flows

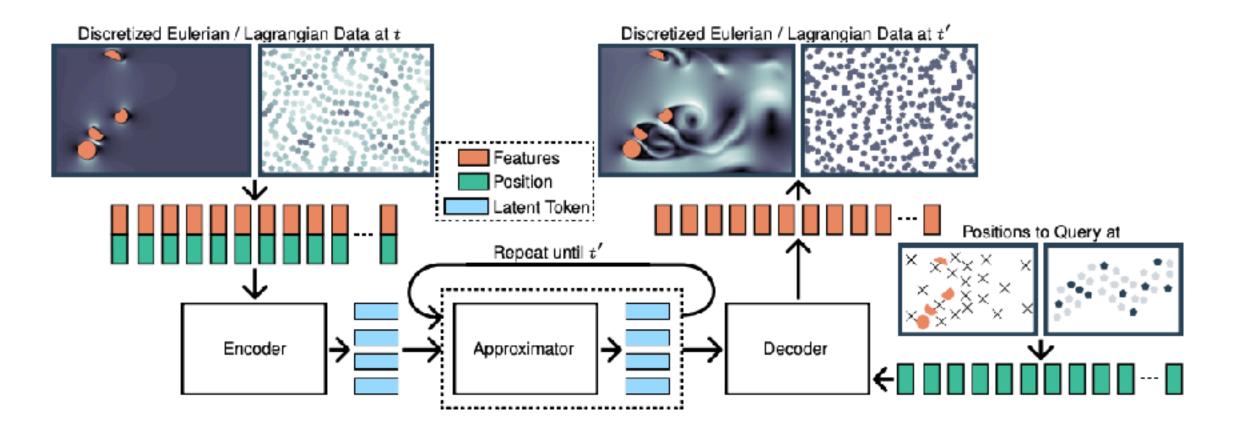
Benedikt Alkin †,*,1,2 Tobias Kronlachner †,*,1,3 Samuele Papa †,†,1,4,5 Stefan Pirker 3 Thomas Lichtenegger 1,3 Johannes Brandstetter $^{\otimes,1,2}$

¹Emmi AI GmbH, Linz, Austria ²ELLIS Unit Linz, Institute for Machine Learning, JKU Linz, Austria ³Department of Particulate Flow Modelling, JKU Linz, Austria ⁴University of Amsterdam, Amsterdam, Netherlands ⁵The Netherlands Cancer Institute, Amsterdam, Netherlands

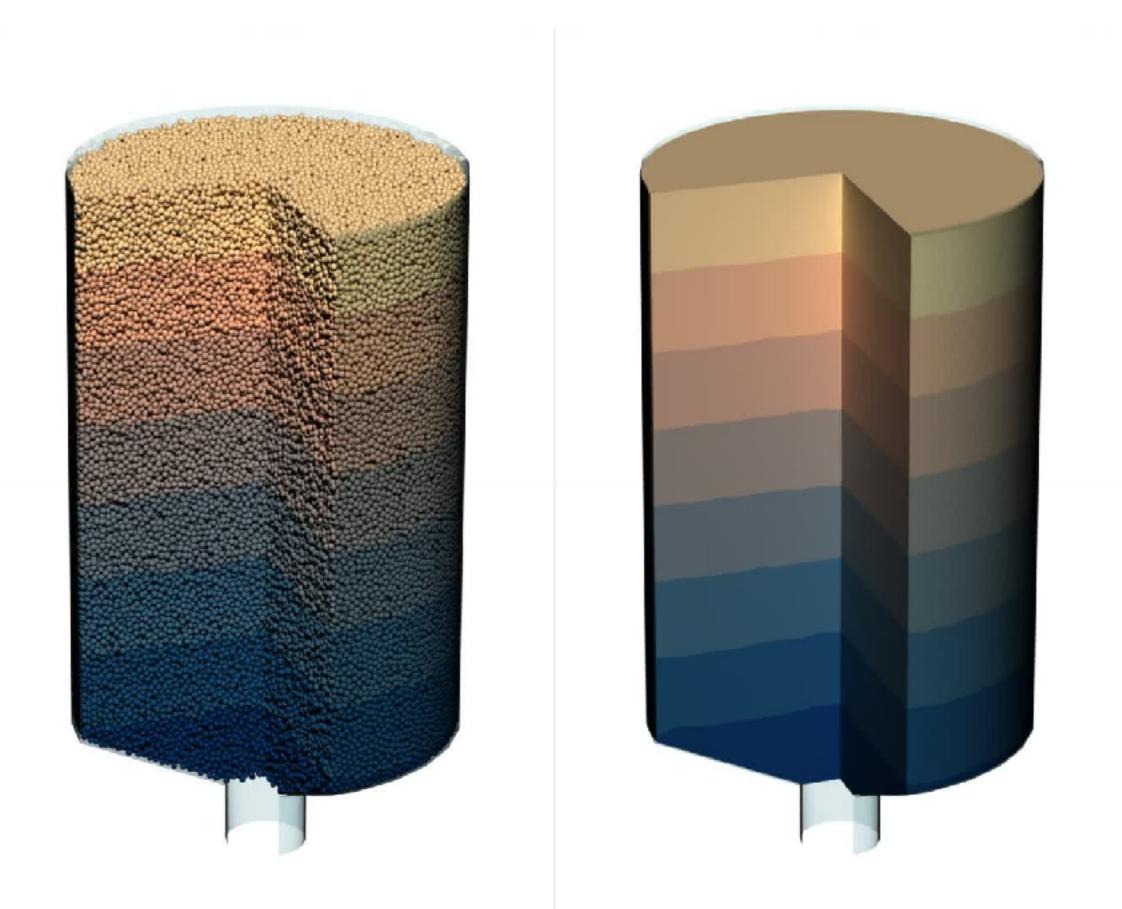
AB-UPT: Scaling Neural CFD Surrogates for High-Fidelity Automotive Aerodynamics Simulations via Anchored-Branched Universal Physics Transformers

Benedikt Alkin*,¹, Maurits Bleeker*,¹, Richard Kurle*,¹, Tobias Kronlachner*,¹, Reinhard Sonnleitner¹, Matthias Dorfer¹, Johannes Brandstetter^{1,2}

*Equal contribution ¹Emmi AI GmbH ²Ellis Unit, LIT AI Lab, JKU Linz Correspondence to benedikt@emmi.ai, johannes@emmi.ai https://github.com/Emmi-AI/AB-UPT

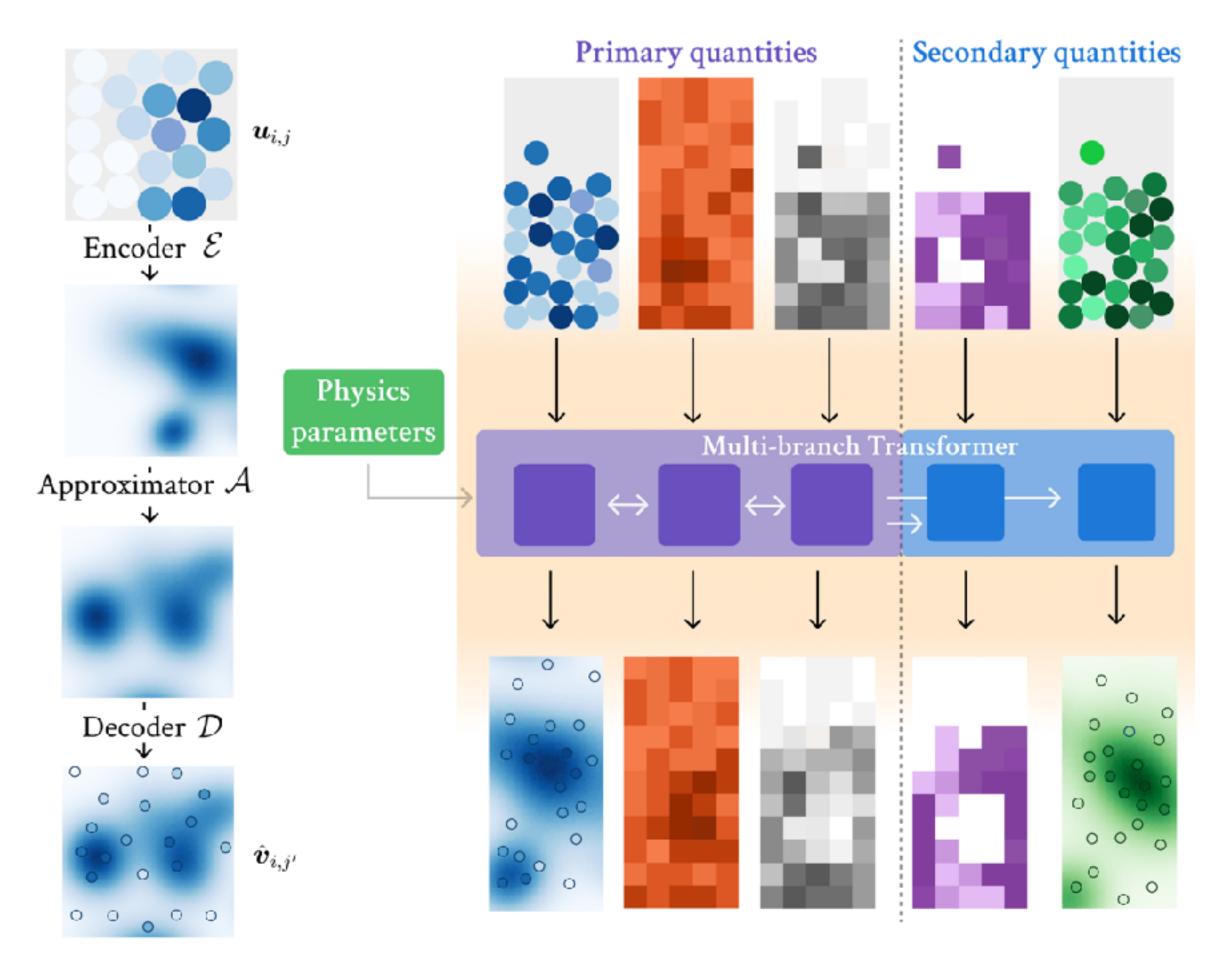


Field point of view



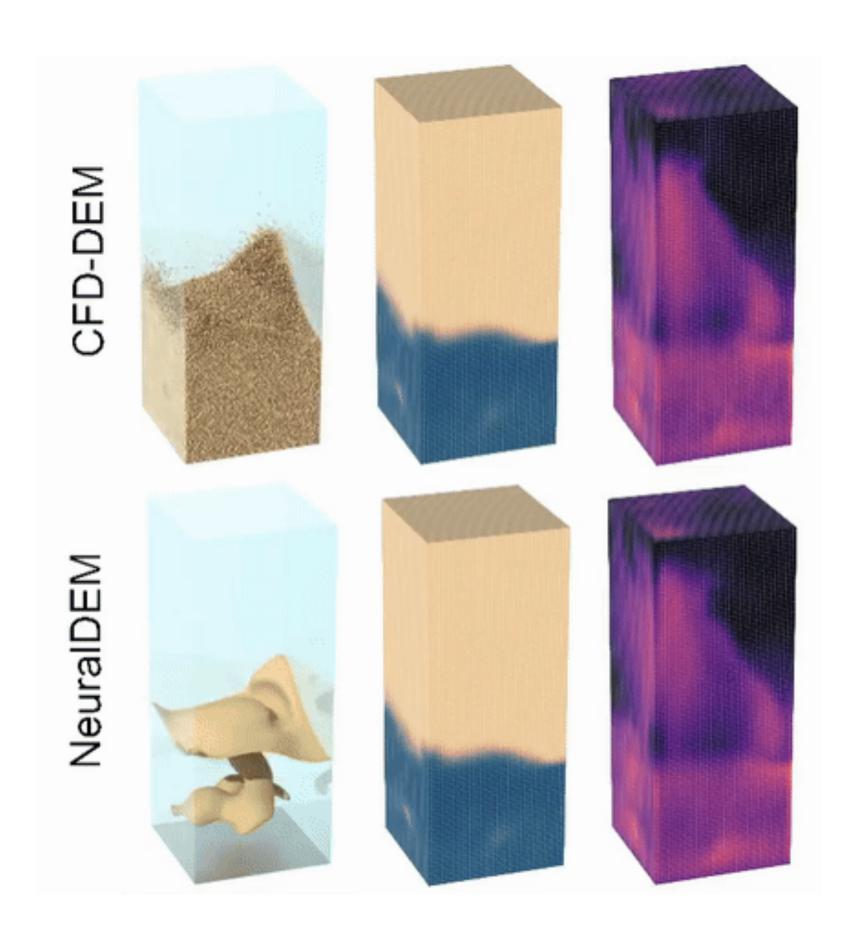
NeuralDEM Alkin et al.

Multi-branch neural operators

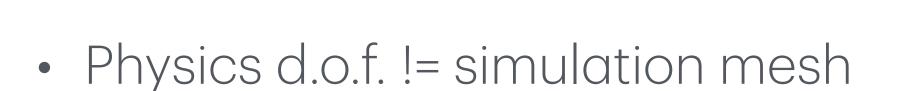


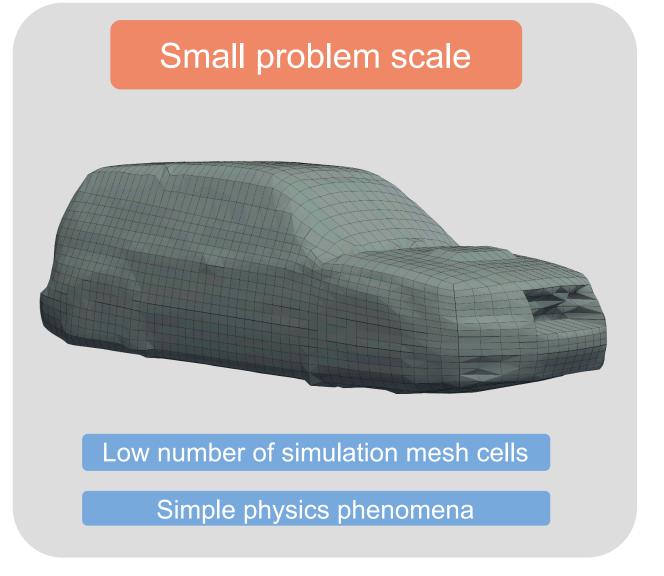
Physics representation

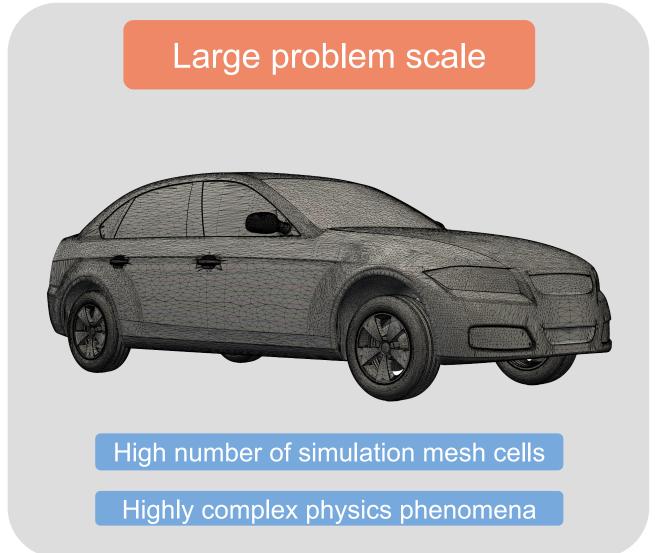
Multi-branch neural operator



Example:CFD



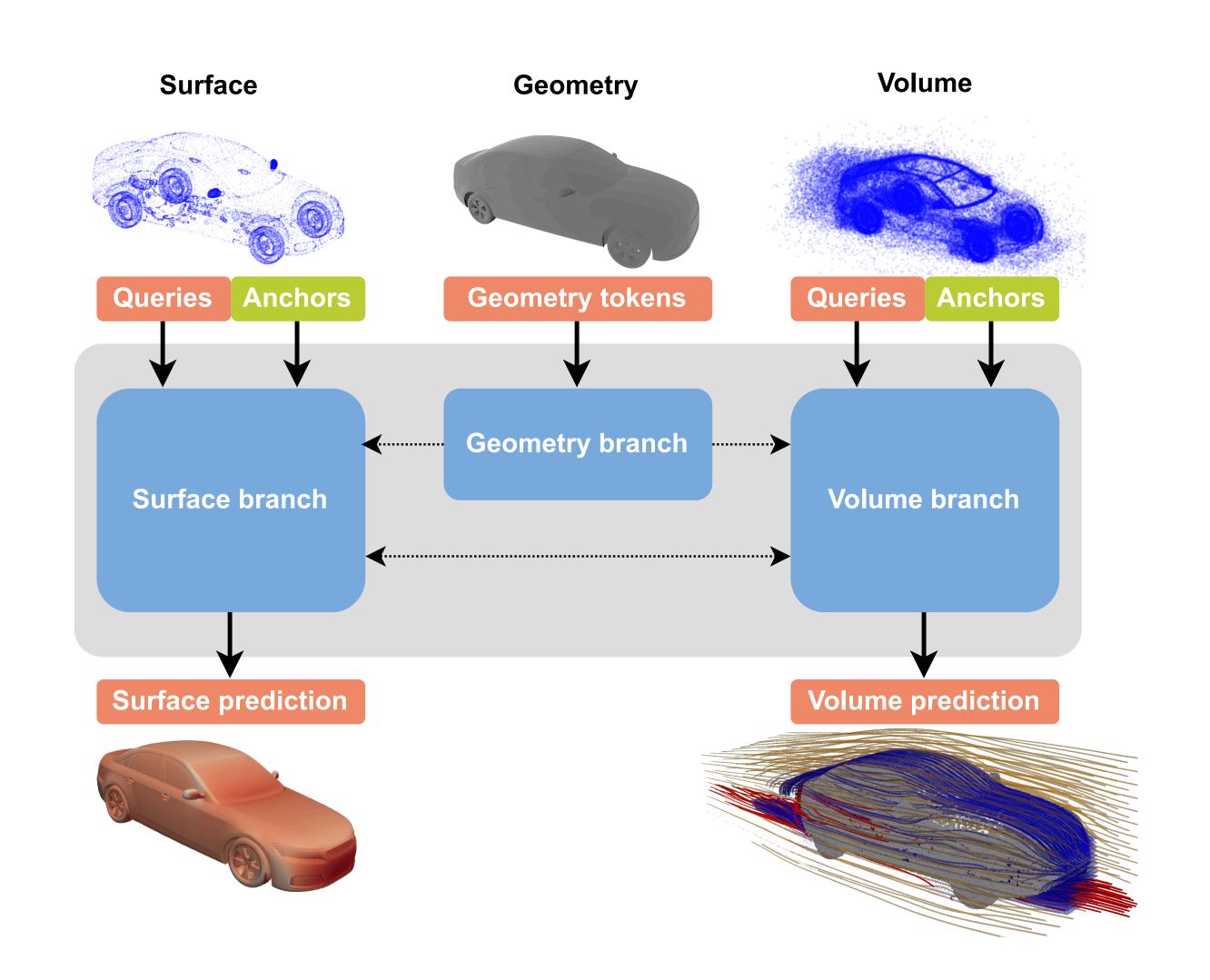


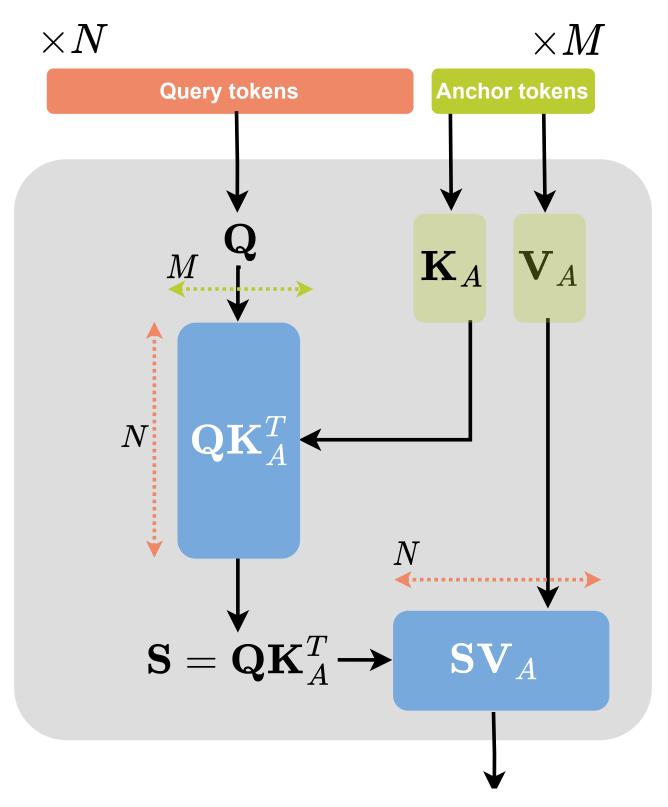


- The fine-grained simulation mesh is needed for numerics, not for ML.
- Quantities such as drag or lift coefficient need full surface resolution.
- Similarly, for many analyses full volume meshes need to be resolved.
- Data is scarce, yet lots of information is within one data sample (physics is the same!)

Multi-branch anchor attention

... opens lots of new modeling possibilities

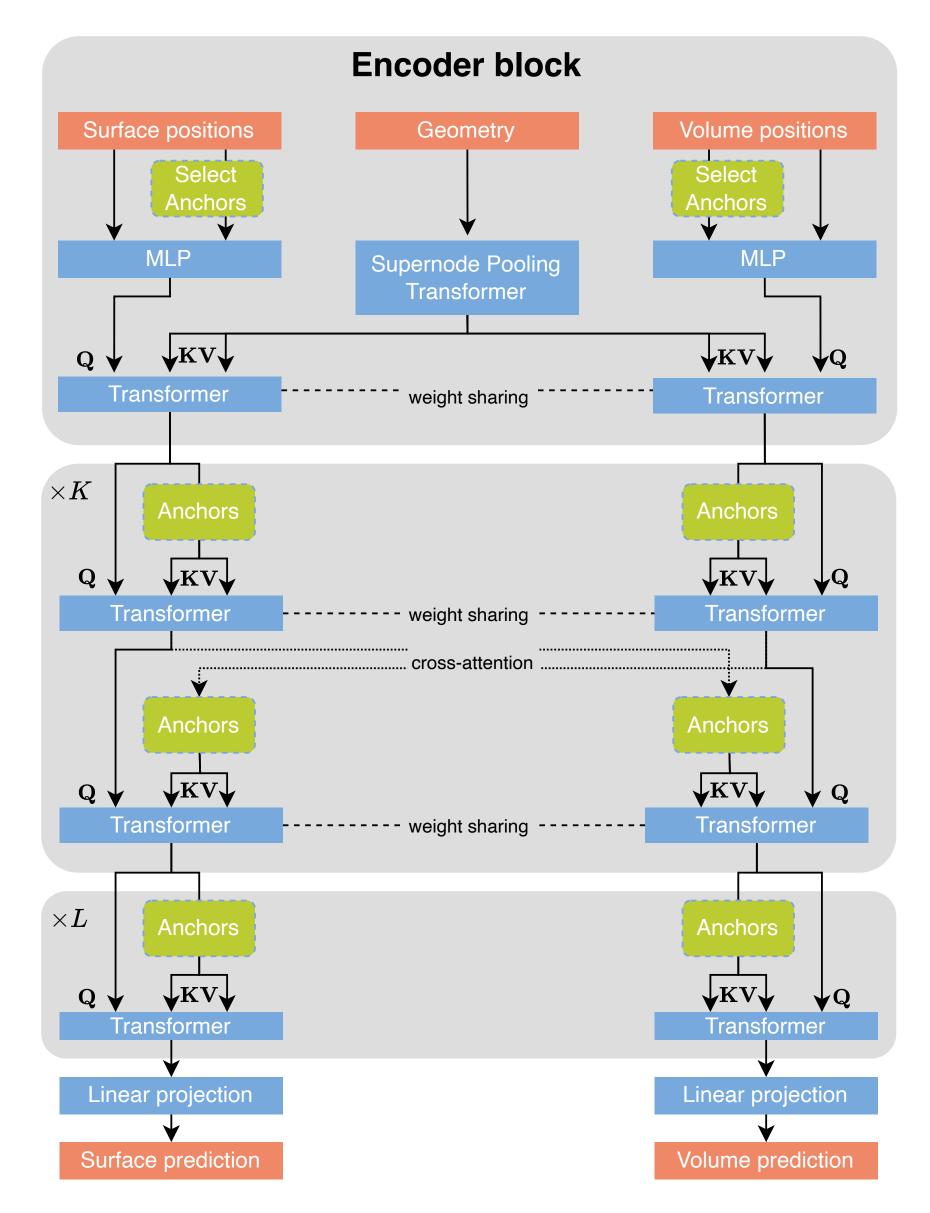


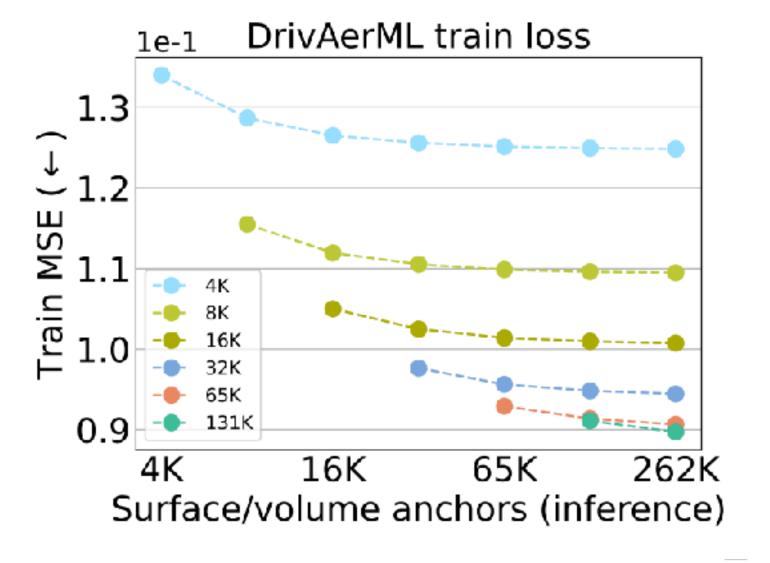


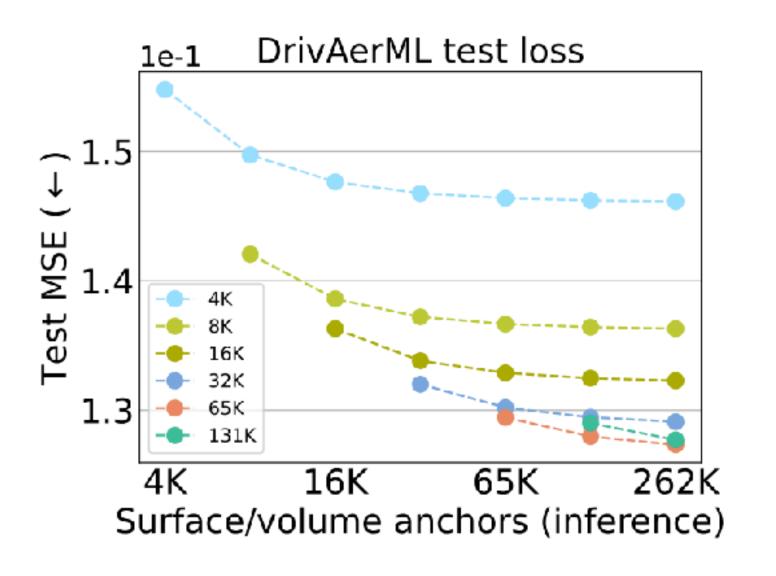
AB-UPT: Scaling Neural CFD Surrogates for High-Fidelity Automotive Aerodynamics Simulations via Anchored-Branched Universal Physics Transformers

Benedikt Alkin^{*,1}, Maurits Bleeker^{*,1}, Richard Kurle^{*,1}, Tobias Kronlachner^{*,1}, Reinhard Sonnleitner¹, Matthias Dorfer¹, Johannes Brandstetter^{1,2}

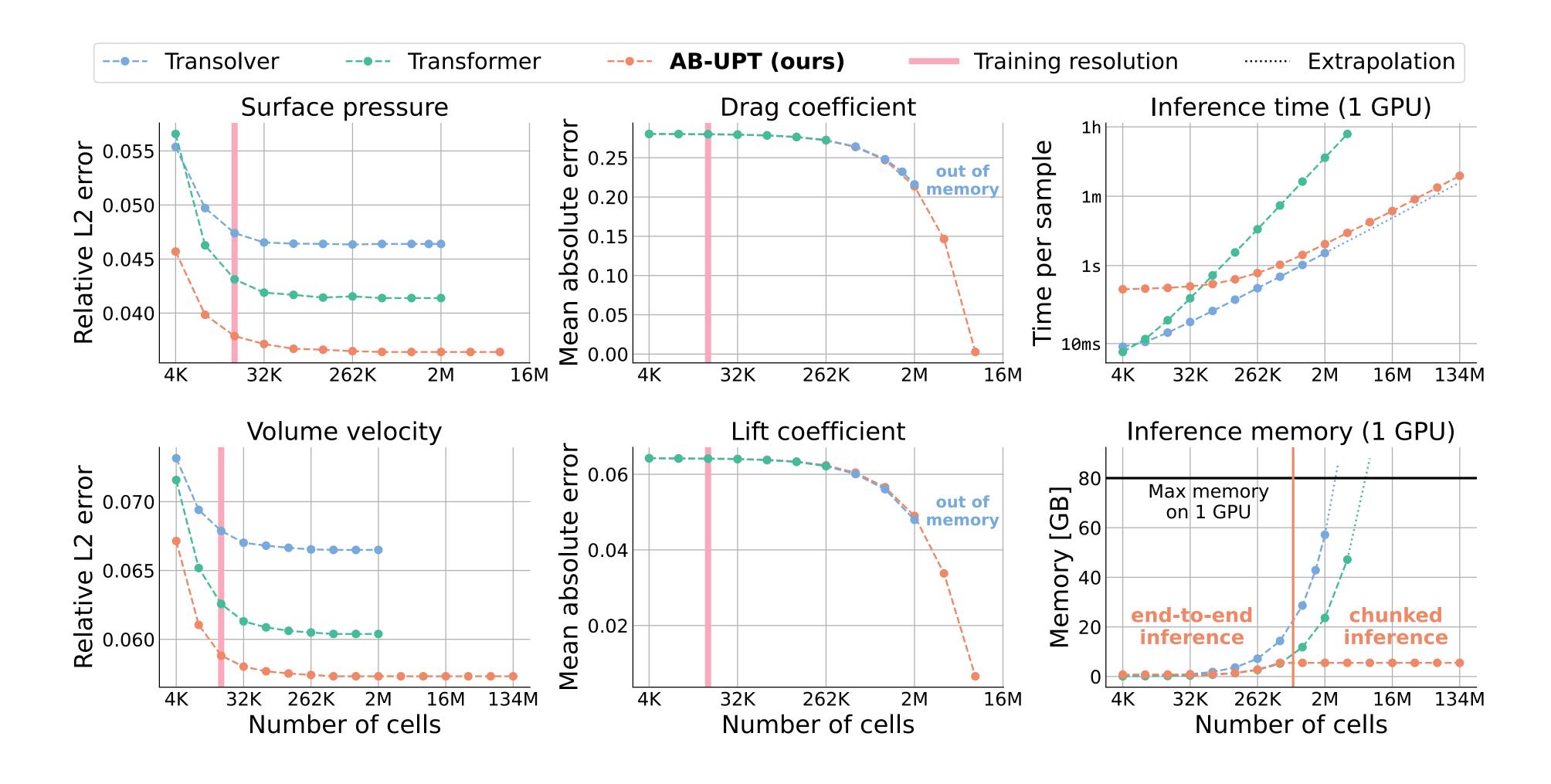
Anchor attention







Model properties



Data scale

Data is the oil in engineering

- There is no ERA5 in engineering.
- Engineering simulations are costly, compute-heavy, complicated, ...
- Data comes with different fidelities, which sometimes amount to orders of magnitude in compute requirements.
- Companies sit on their data.
- ML workflows are widely missing.
- Data is IP.

Example

Large-scale CFD

Nuclear fusion

5-dim gyrokinetic framework

- Turbulence is a key driver of plasma confinement degradation, as it causes plasma to diffuse towards the reactor wall.
- Evolution of particles (ones and electrons) is described in terms of distribution function (3D space, 3D velocity space)
- Perpendicular fluctuations scale much smaller than the system size.
- Experimentally proved to be a good model for turbulence.

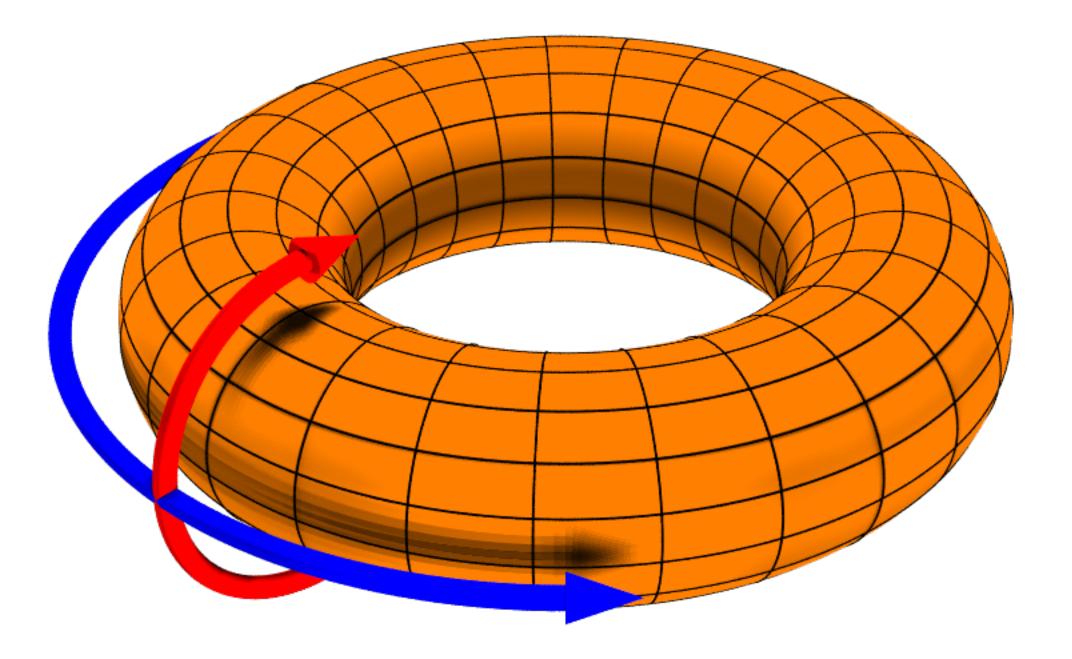
GyroSwin: 5D Surrogates for Gyrokinetic Plasma Turbulence Simulations

Fabian Paischer*^{1,3} Gianluca Galletti*¹ William Hornsby² Paul Setinek¹

Lorenzo Zanisi² Naomi Carey² Stanislas Pamela² Johannes Brandstetter^{1,3}

¹ ELLIS Unit, Institute for Machine Learning, JKU Linz
² United Kingdom Atomic Energy Authority, Culham campus
³ EMMI AI, Linz
{paischer,galletti,brandstetter}@ml.jku.at

github.com/ml-jku/neural-gyrokinetics



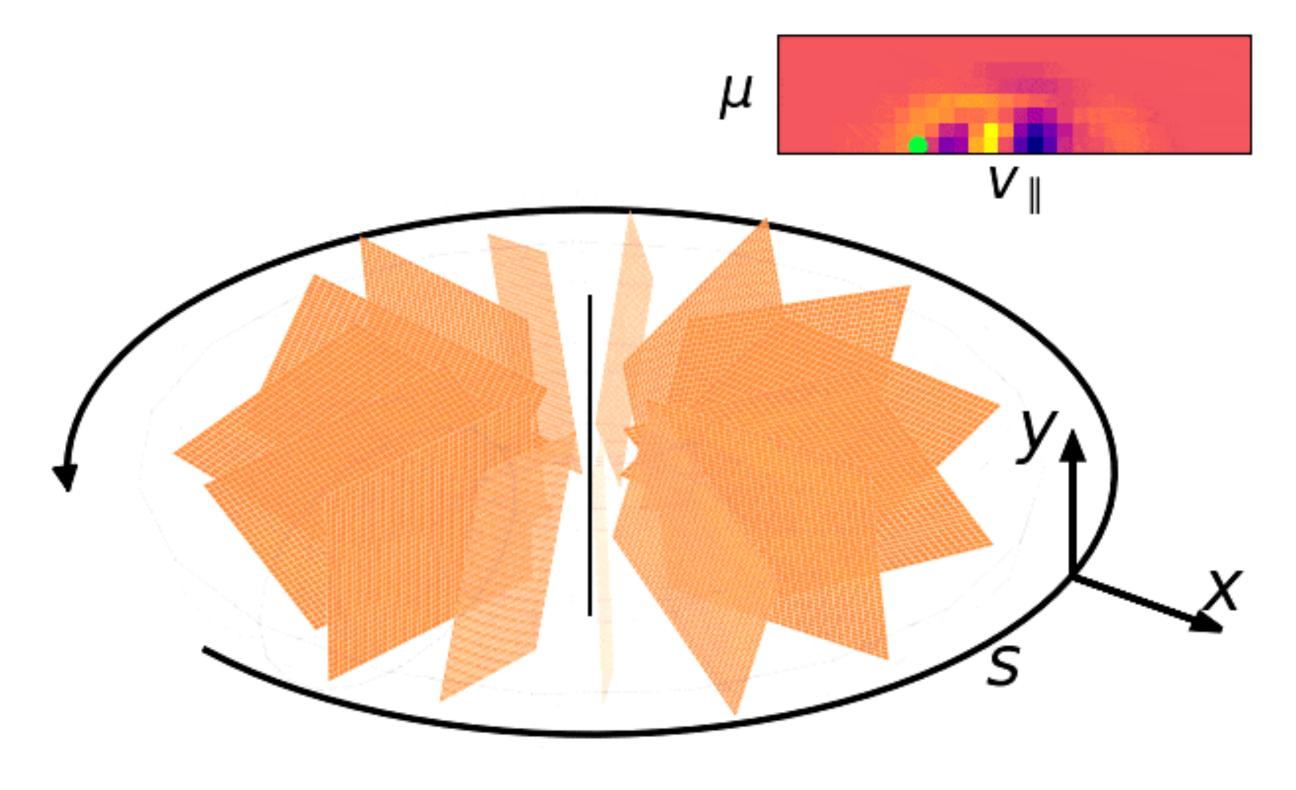
GyroSwin results

Table 1: Comparison of different surrogate approaches by capabilities.

Method	Average Flux	Diagnostics	Zonal Flows	Turbulence
Tabular Regressors, e.g., GPR, MLP	1D→0D	×	×	×
SOTA Reduced Numerical modelling, e.g., QL	$3D\rightarrow 0D$	3D→1D	X	×
Neural Surrogates, e.g. GyroSwin (Ours)	5D→ 0 D	5D→1D	5D→1D	5D→5D

Table 2: Evaluation for 5D turbulence modelling and nonlinear heat flux prediction. We evaluate all methods across six in-distribution (**ID**) and five out-of-distribution (**OOD**) simulations. For \bar{Q} we report RMSE of time-averaged predictions after an autoregressive rollout. For f we report correlation time for autoregressive rollouts with threshold $\tau=0.1$. Higher correlation time is better.

Method	Input	f f		$ar{Q}$				
Method		ID (†)	OOD (†)	ID (↓)	OOD (\b)			
SOTA Reduced Numerical modelling								
QL (Bourdelle et al., 2007)	3D	n/a	n/a	89.53 ± 11.76	95.22 ± 21.57			
Classical Regression Techniques								
GPR (Hornsby et al., 2024)	0D	n/a	n/a	43.82 ± 10.84	59.28 ± 17.55			
MLP	0D	n/a	n/a	50.50 ± 10.79	61.98 ± 18.41			
Neural Surrogate Models (48 simulations)								
FNO (Li et al., 2021)	3D	9.33 ± 0.56	9.20 ± 0.58	119.88 ± 13.15	124.96 ± 23.27			
PointNet (Qi et al., 2016)	5D	7.33 ± 0.21	7.40 ± 0.24	119.93 ± 13.15	125.05 ± 23.29			
Transolver (Wu et al., 2024)	5D	9.83 ± 1.40	10.80 ± 1.46	119.93 ± 13.15	125.05 ± 23.28			
ViT (Dosovitskiy et al., 2021)	5D	16.83 ± 1.49	19.20 ± 1.36	119.63 ± 13.13	125.13 ± 23.29			
GyroSwin (Ours)	5D	26.50 ± 3.55	28.60 ± 8.82	67.68 ± 10.28	70.48 ± 17.21			
Scaling GyroSwin to 241 simulations								
GyroSwin _{Small} (Ours)	5D	98.00 ± 27.53	76.40 ± 17.60	23.72 ± 4.05	53.54 ± 18.10			
GyroSwin _{Medium} (Ours)	5D	94.17 ± 21.96	91.20 ± 18.61	37.24 ± 9.60	44.17 ± 17.68			
GyroSwin (Ours)	5D	110.33 ± 19.74	$\textbf{111.80} \pm \textbf{23.86}$	18.35 ± 1.56	26.43 ± 9.49			



Open challenges

- Multi-fidelity datasets
- Real-world measurements (digital twins)
- Sim to real gap
- Transient simulations / data storage

PAINT



PAINT: Parallel-in-time Neural Twins for Dynamical System Reconstruction

