
Johannes Brandstetter	
ML in Poland 2025 	
October 17 2025	

johannes@emmi.ai

What’s the Next Wave of Disruption in Science and 
Engineering?	
Reference Models for Engineering 

mailto:johannes@emmi.ai


Content of this talk

• AI4Engineering (AI beyond LLMs) 

• Reference models as the way forward 

• I am giving my opinions which change over time and should not be taken too serious! 

Disclaimer: This talk is very much centered around data-driven simulations!  
Might be transferable to other areas.



Status quo

• In the next five years, AI breakthroughs will be build on Transformers which run on Nvidia GPUs built at TSMC with 
ASML machines (which uses Zeiss technology and Trumpf lasers): 

• AI race is an intertwined global affair 

• Focus is on text, images, videos, … 

• “Let’s build things bigger and bigger and bigger until intelligence emerges” 

• Big players built GPU centres with > 100k GPUs 

• Energy supply has silently become the next frontier 

• OpenAI/Anthropic are valued 500/183 billion US dollars (and still far from profitable) 

• Is there something else? 



The elevator pitch for investors

• AI systems have been scaled up for 
language and vision applications with 
tremendous success.  

• Many verticals remain untouched. 

• Manufacturing, engineering, 
logistics,… 

• And my personal bet: data-driven 
simulations, digital twins, …



Reference models

• Foundation models are trained on internet-scale data: 

• GPT, Gemini, SAM 

• Lots of claims on foundation models for physics: 

• One model for all physics? 

• Reality is very different 

• Reference models == foundation-like models far small, well-defined settings: 

• Weather, injection molding, external aerodynamics, semiconductors



Let’s make it a bit more haptic

Reference models

• Example CFD: turbulent / laminar flows, 
jets / wake flows / mixing layers, 
subsonic / transonic / supersonic, 
geometries, chemistry, multi-physics, … 

• We can write the input as something like 

 

• To cover ALL CFD is nearly impossible 

• We need to limit us to certain settings!



Nature is described by differential equations
Quantum Chemistry

Classical Chemistry
Astrophysics

nanometers/femtoseconds kilometers/daysa vast range of spatial & temporal scales

Fluid Dynamics
Particle Physics

Courtesy:Max Welling



We discretize space and time

Numerical solutions for PDEs

• Formulation of a time-dependent PDE: 
 
 
 
 
 

• We discretize domain into grid: 

• Estimate the spatial derivatives, e.g. FDM 

• Use spatial estimates for time update (e.g., Euler update) 



Weather as an example



November 2022

The Sputnik Pangu weather moment





The evolution of Earth system prediction
1820s: Navier-Stokes equations formulated 
1890s: Cleveland Abbe establishes theoretical basis for weather prediction 
1904: Vilhelm Bjerknes outlines systematic approach to weather prediction 
1917: Lewis Fry Richardson develops first numerical weather prediction methods

the 
analytical 

age

the 
numerical 

age

1922: Richardson publishes "Weather Prediction by Numerical Process" 
1946: ENIAC computer developed, enabling first numerical calculations 
1950: First numerical weather prediction by Charney, Fjørtoft, and von Neumann 
1955: First operational numerical weather predictions 
1960s: Global circulation models emerge 
1975: ECMWF established, marking international collaboration 
1979: First coupled ocean-atmosphere models 
1983: European Centre's IFS model introduced 
1990s: Ensemble prediction systems developed

the AI age

2018: First serious comparisons of AI vs physics models (Dueben and Bauer) 
2019: AI models skillful to multiple days (Weyn et al.) 
2020: WeatherBench starts to drive ML development (Rasp et al.) 
2022: GNNs outperform GFS at 1o (Keisler) 
2023: ClimaX demonstrates first foundation model principles 
2023: Pangu-Weather outperforms HRES at 0.25o (Bi et al.) 
2024: GenCast outperforms IFS ensemble(Price et al.) 
2024: ECMWF launches AIFS, Microsoft Research launches Aurora



Weather data

Shape = H x W

Shape = L x H x W

Surface variable: temp 2m from the 
Earth’s surface

Atmospheric variable: wind speed



Why Earth science needs Foundation Models

Enter Aurora: 
• Pre-trained 1PB of diverse data 
• Fine-tuned to tackle diverse tasks 
• Strong performance on operational evals

1.Exabytes of data 
• Multiple scales and modalities 
• Observations: satellites, weather stations 
• NWP: forecasts, analysis, reanalysis

2.Transfer learning opportunities 
• Common physical principles 
• Coupled interactions 
• Effective in data scarce tasks

3.Compute & Infrastructure demands 
• Current specialized AI models: limited scope  
• Current NWP models: node-hours on supercomputers 
• Foundation models:  

• 4-8 weeks development per fine-tuning task 
• Inference takes minutes on 1 GPU 
• Improved flexibility, performance, robustness 
• Unlocking new capabilities, sustainability!



Pre-trainingAurora
Pretraining

• Predict global state of any variables at 
any resolution 6 h ahead

Cost:


• 150 000 steps


• 32 A100s


• 3 weeks

Aurora
Pretraining

• Predict global state of any variables at 
any resolution 6 h ahead

Cost:


• 150 000 steps


• 32 A100s


• 3 weeks

• Objective: Predict global state of any 
variables at any resolution 6h ahead 

• Cost: 
• 150,000 steps 
• 32 A100s 
• 3 weeks



Fine-tuning task #1: Air pollution forecasting
Setup: Model concentration of PM1, PM2.5, PM10, CO, NO, NO2, SO2, O3 

Data: Copernicus Atmospheric Monitoring Service (CAMS) analysis, 0.4o resolution 

Baseline: Operational CAMS forecasts

NO2, like most variables in CAMS, is skewed towards high values in areas with high 
anthropogenic emissions. It also exhibits a strong diurnal cycle due to photolysis.

Challenges: 
• Adaptation to a new domain 
• Data scarcity 
• Non-stationary 
• Lack of emission data 





Fine-tuning task #2: Ocean wave forecasting
Setup: Model height, period, and direction of all wave components 

Data: IFS HRES-WAM analysis, 0.25o resolution 

Baseline: IFS HRES-WAM operational forecasts

Challenges: 
• Adaptation to a new domain 
• Data domain is not fixed 
(e.g., absence of swell, 
sea ice) 

• How to model wave angles? 

Aurora accurately predicts significant wave height and mean wave direction for 
Typhoon Nanmadol, the most intense tropical cyclone in 2022. The red box shows the 
location of the typhoon and the number is the peak significant wave height.



Fine-tuning task #3: High-resolution weather forecasting
Setup: Model weather variables such as wind speed, temperature, specific humidity, etc.  

Data: IFS HRES analysis, 0.1o resolution 

Baseline: IFS HRES operational forecasts

Challenges: 
• Adaptation to a 
new resolution 

• Data scarcity 
• Data complexity 
(~2GB per 
datapoint) 



Storm Ciaran in Amsterdam



Setup: Model weather variables such as wind speed, temperature, specific humidity, etc.  

Data: IFS HRES analysis, 0.1o resolution 

Baseline: IFS HRES operational forecasts

Challenges: 
• Adaptation to a 
new resolution 

• Data scarcity 
• Data complexity 
(~2Gb per 
datapoint) 

Charlton-Perez et al. (2024) showed that existing AIWP models were not able to capture the spike 
in maximum 10 m wind speed that occurs on 00 UTC 2 November 2023. Aurora is able to better match 
the IFS-HRES forecast of the sudden increase in 10 m wind speed.



Fine-tuning task #4: Tropical Hurricane Tracking
Data: Tropical hurricane tracks in 2023 

Baselines: Operational forecasts issued by multiple centers worldwide

• First AI model to outperform 
multiple operational centers 
in various regions.

On 21 July, 2023 a tropical depression intensified into a tropical storm and was named 
Typhoon Doksuri. Doksuri would become the costliest Pacific typhoon to date, inflicting 
more than 28 billion USD in damage. Aurora correctly predicts that Doksuri will make 
landfall in the Northern Philippines, whereas PGTW predicts that it will pass over Taiwan.



A breakdown of the success story

Global medium-range weather forecasting

• Breakthroughs are obtained due to 3 reasons: 

1. Model scale: Vision Transformers / Swin Transformers have be proven as go-to method 
for 2D/3D vision applications): Pangu, Aurora, … 

2. Data scale: ERA5 is a publicly available dataset which is easy-accessible and large 
enough. Aurora uses a plethora of similar datasets. 

3. Tasks / Metrics: MSE on next time step (6 hours ahead). We take a snapshot of the 
earth and predict 6 hours into the future. Tasks / metrics is the enabler route!



From weather to reference 
models for engineering



We are facing new unknown ML challenges

The elevator pitch for scientists

CFD 
1 billion mesh cells, 3D 

Non-transient

Multi-physics 
500k particles, 200k mesh cells,  

3D, coupled, transient



We first need to build model frameworks that take the role of ViTs in weather modeling

Problem scale



Field point of view

NeuralDEM 
Alkin et al.



Multi-branch neural operators



Example:CFD

• Physics d.o.f. != simulation mesh 

• The fine-grained simulation mesh is needed for numerics, not for ML. 

• Quantities such as drag or lift coefficient need full surface resolution. 

• Similarly, for many analyses full volume meshes need to be resolved. 

• Data is scarce, yet lots of information is within one data sample (physics is the same!)

Low number of simulation mesh cells

Small problem scale

Simple physics phenomena

High number of simulation mesh cells

Highly complex physics phenomena

Large problem scale



… opens lots of new modeling possibilities

Multi-branch anchor attention

Queries QueriesGeometry tokens

Surface prediction Volume prediction

Surface branch

Geometry branch

Volume branch

Anchors Anchors

Surface Geometry Volume
Query tokens Anchor tokens



Anchor attention
GeometrySurface positions Volume positions

Supernode Pooling
Transformer

MLPMLP

Transformer Transformer

Transformer Transformer

Anchors

Transformer Transformer

AnchorsAnchors

Anchors

Transformer Transformer

Anchors Anchors

Linear projection Linear projection

Surface prediction Volume prediction

weight sharing

weight sharing

weight sharing

Select
Anchors

Select
Anchors

cross-attention

Encoder block



Model properties



Data is the oil in engineering

Data scale

• There is no ERA5 in engineering. 

• Engineering simulations are costly, compute-heavy, complicated, … 

• Data comes with different fidelities, which sometimes amount to orders of magnitude in 
compute requirements.  

• Companies sit on their data. 

• ML workflows are widely missing. 

• Data is IP.



Large-scale CFD

Example



5-dim gyrokinetic framework

Nuclear fusion

• Turbulence is a key driver of plasma 
confinement degradation, as it causes 
plasma to diffuse towards the reactor wall. 

• Evolution of particles (ones and electrons) 
is described in terms of distribution 
function (3D space, 3D velocity space) 

• Perpendicular fluctuations scale much 
smaller than the system size. 

• Experimentally proved to be a good model 
for turbulence.



GyroSwin results



Open challenges

• Multi-fidelity datasets 

• Real-world measurements (digital twins) 

• Sim to real gap 

• Transient simulations / data storage



PAINT


