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Content of this talk

- Al4Engineering (Al beyond LLMs)
- Reference models as the way forwara

. | am giving my opinions which change over time and should not be taken too serious!

Disclaimer: This talk is very much centered around data-driven simulations!
Might be transferable to other areas.




otatus quo

- |n the next five years, Al breakthroughs will be build on Transformers which run on Nvidia GPUs built at TSMC with
ASML machines (which uses Zeiss technology and Trumpf lasers):

- Al race is an intertwined global affair
- Focus is on text, images, videos, ...
- “Let’s build things bigger and bigger and bigger until intelligence emerges”

- Big players built GPU centres with > 100k GPUs

11,69 EUR 29 Dec 2023

- Energy supply has silently become the next frontier

- OpenAl/Anthropic are valued 500/183 billion US dollars (and still far from profitable)

T
2024 2025

. |s there something else?

SIEMENS
cnercy



‘he elevator pitch for investors

. Al systems have been scaled up for Language
anguage and vision applications with
tremendous success.

, _ Manufacturing
- Many verticals remain untouched.

- Manufacturing, engineering,
ogistics, ...

Engineering
- And my personal bet: data-driven »

simulations, digital twins, ...

Graphic: Maturity of Al Applications Per Vertical




Reference models

- Foundation models are trained on internet-scale data:
- GPT, Gemini, SAM
. Lots of claims on foundation models for physics:
- One model for all physics?
- Reality is very different
- Reference models == foundation-like models far small, well-defined settings:

- Weather, injection molding, external aerodynamics, semiconductors



Reference models

Lets make it a bit more haptic

- Example CFD: turbulent / laminar flows,
jets / wake flows / mixing layers,
subsonic / transonic / supersonic,
geometries, chemistry, multi-physics, ...

- We can write the input as something like

UCFD = [ugeom; W preprocess s Whoundary/initial ; Wmesh, Wphys 'U'discr]

- To cover ALL CFD is nearly impossible

- We need to limit us to certain settings!



Courtesy:Max Welling

erential equations

Nature is described py di

Quantum Chemistry
Particle Physics Classical Chemistry

Fluid Dynamics Astrophysics
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Numerical solutions for PDEs

We discretize space and time

- Formulation of a time-dependent PDE:

oyu = F(t,%x,u,0x1u, OxxU,. . .) (t,x) € [0,T] x X
u(t,x) = u’(x) x € X
Blu](t,x) =0 (t,x) € [0,T] x 0X

- We discretize domain into grid:

f(:z:+h,y)~f(:c—h,y)
e+ ) - Fay— B
. . . . r,y v) — 2,y —

- Estimate the spatial derivatives, e.g. FDM fu@,y) = T
f(:r+h,y)—2f(a:,y)+f(:c—h,y)
h2

. . . x, k) —2f(x, z,y—kK
. Use spatial estimates for time update (e.g., Euler update)  faen~ oD =2en 2 fny=D

f(m+h)y+k)_f($+h:y_k)_f(m_h1y+k)+f(m_h)y_k)
4hk .

f:c(x:y) ~

fra(2,y) =

fry(2,y) =



Weather as an example
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Article Open access Published: 05 July 2023

T'he sputrik Pangu weather moment

Accurate medium-range global weather forecasting

with 3D neural networks

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu & Qi Tian|

Nature 619, 533-538 (2023) | Cite this article

286k Accesses | 1012 Citations | 1749 Altmetric | Metrics

Abstract

Weather forecasting is important for science and society. At present, the most accurate
forecast system is the numerical weather prediction (NWP) method, which represents
atmospheric states as discretized grids and numerically solves partial differential equations
that describe the transition between those states!. However, this procedure is
computationally expensive. Recently, artificial-intelligence-based methods? have shown
potential in accelerating weather forecasting by orders of magnitude, but the forecast
accuracy is still significantly lower than that of NWP methods. Here we introduce an artificial-
intelligence-based method for accurate, medium-range global weather forecasting. We show
that three-dimensional deep networks equipped with Earth-specific priors are effective at
dealing with complex patterns in weather data, and that a hierarchical temporal aggregation
strategy reduces accumulation errors in medium-range forecasting. Trained on 39 years of
global data, our program, Pangu-Weather, obtains stronger deterministic forecast results on
reanalysis data in all tested variables when compared with the world’s best NWP system, the
operational integrated forecasting system of the European Centre for Medium-Range
Weather Forecasts (ECMWF)2. Our method also works well with extreme weather forecasts
and ensemble forecasts. When initialized with reanalysis data, the accuracy of tracking
tropical cyclones is also higher than that of ECMWF-HRES.
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The evolution of Earth system prediction

1820s: Navier-Stokes equations formulated

1890s: Cleveland Abbe establishes theoretical basis for weather prediction
1904: Vilhelm Bjerknes outlines systematic approach to weather prediction
1917: Lewls Fry Richardson develops first numerical weather prediction methods

the
analytical
age

1922 : Richardson publishes "Weather Prediction by Numerical Process"
1946: ENIAC computer developed, enabling first numerical calculations
1950: First numerical weather prediction by Charney, Fjgrtoft, and von Neumann

th? 1955: First operational numerical weather predictions
numerical 1960s: Global circulation models emerge
aJe 1975: ECMWF established, marking i1nternational collaboration

1979: First coupled ocean-atmosphere models
1983: European Centre's IFS model introduced
1990s: Ensemble prediction systems developed

2018: First serious comparisons of AI vs physics models (Dueben and Bauer)
2019: AT models skillful to multiple days (Weyn et al.)

2020: WeatherBench starts to drive ML development (Rasp et al.)

2022 : GNNs outperform GFS at 1o (Keisler)

2023: ClimaX demonstrates first foundation model principles

2023 : Pangu-Weather outperforms HRES at 0.25° (Bi et al.)

2024 : GenCast outperforms IFS ensemble (Price et al.)

2024 : ECMWEF launches AIFS, Microsoft Research launches Aurora

the AI age




Weather data

Surface variable: temp Z2m from the
Farth’s surface

Atmospheric variable: wind speed

H x W

Shape




Why

1.Exabytes
e Multiple

e Observations:
forecasts,

o NWP:

T 1
e

Earth science needs

of data
scales and modalities
satellites, weather stations

analysis, reanalysis

2.Transfer learning opportunities
e Common physical principles

e Coupled

interactions

e Effective 1n data scarce tasks

3.Compute & Infrastructure demands

e Current specialilized AI models:
e Current NWP models:

limited scope
node—-hours on supercomputers

e F'oundation models:

o 4-8

weeks development per fine-tuning task

e Inference takes minutes on 1 GPU

e Improved flexibility,
e Unlocking new capabilities,

performance,
sustainability!

Enter Aurora:
e Pre—-trained 1PB of diverse data

e 'lne-tuned to tackle diverse tasks
e Strong performance on operational evals

robustness

Observed and

simulated ‘big data’

‘Kn
OWledge from daty’

“oundadation Models

Patterns and
knowledge

Velocity
Speed of : "
change | Real-time critical
In some areas, not all
Variety Integrated across
Diverse data disciplines
sources
Confidence
robustness
Veracity B
Uncertainty
of data
4 N N N (¢ N
ATMOSPHERIC CHEMISTRY WAVE MODELLING HURRICANE TRACKING WEATHER FORECASTING
AND AIR QUALITY 0.1°
(B2 © || o
\_ J L J J . . J
4 N
AURORA FOUNDATION MODEL
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Pre-training

e Objective: Predict global state of any
varlables at any resolution 6h ahead

e Cost:
e 150,000 steps
e 32 A100s

e 3 weeks

Variable  Units Description

SURFACE-LEVEL METEOROLOGICAL VARIABLES
2T K

Temperature at 2 m above surface of land or sea

U10 ms—! Eastward component of wind at 10 m

V10 ms~1 Southward component of wind at 10 m

WS ms1 Wind speed at 10 m; equal to (U10% + V102)1/2
MSL Pa Air pressure at mean sea level

ATMOSPHERIC METEOROLOGICAL VARIABLES

U ms~ 1 Eastward component of wind

Vv ms~1 Southward component of wind

T K Temperature

Q kgkg~! Specific humidity

Z m? s~ 2 Geopotential

Pretraining Datasets

: ] Surface Atmospheric Num : Num
Name Resolution Timeframe Variables Variall))les levels Size (TB) frames

ERA5S 0.25°x 0.25° 1979-2020 2T, U10, VIOOLMSL U,V,T,Q, Z 13 105.43 367,920
HRES-0.25 0.25°x 0.25° 2016-2020 2T, U10, VIOOLMSL U,V,T,Q, Z 13 42.88 149,650
IFS-ENS-0.25 0.25°x 0.25° 2018-2020 2T, U10, VIOOLMSL U,V,T,Q, Z 3 518.41 6,570,000
GFS Forecast 0.25°x 0.25° 2015-2020 2T, U10, VIOOLMSL U,V,T,Q,Z 13 130.39 560,640
GFS Analysis 0.25°x 0.25° 2015-2020 2T, U10, VIOOLMSL U,V,T,Q, Z 13 2.04 8,760
GEFS Reforecast 0.25°x 0.25° 2000-2019 2T, MSL U,VTQ,Z 3 194.02 2,920,000
CMCC-CM2-VHR4 0.25°x 0.25° 1950-2014 2T, U10, V10, MSL U, V,T,Q 7 12.6 94,900
ECMWE-IFS-HR 0.45°x 0.45° 1950-2014 2T, U10, V10, MSL U V,TQ 7 3.89 94,900
MERRA-2 0.625°x 0.5° 1980-2020 2T, U10, V10, MSL UV,TQ 13 5.85 125,560
IFS-ENS-Mean 0.25°x 0.25° 2018-2020 2T, U10, VIOOLMSL U,V,T,Q, Z 3 10.37 131,400

Total 1,219.91 11,023,730
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-Tne-tuning task

Data:

Baseline: Operational CAMS forecasts

Challenges:

* Adaptation to a new domain
e Data scarcity

* Non—-stationary

e Lack of emission data

1

ET42.5/

Copernicus Atmospheric Monitoring Service

- Alr pollution

PMiqg, CO, NO, NO», S0O>, O3

(CAMS) analysis,

orecasting

0.40 resolution

NO2,

anthropogenic emissions.

like most variables in CAMS, 1s skewed towards high values 1in areas with high

It also exhibits a strong diurnal cycle due to photolysis.




CAMS Forecast Aurora

CAMS Analysis

» Aurora accurately captures a severe sandstorm that hit Irag on June 13, 2022.
Initialization via CAMS analysis at 12 Jun 2022 00 UTC.

2022-06-12 12 UTC

2022-06-13 00 UTC

2022-06-13 12 UTC

S

RMSE: 45 ug m™—3

S

RMSE: 105 pg m™3

RMSE: 79 ug m™—3
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-Tne-tuning task #2: Ocean wave torecasting

Setup: Model height, period, and direction of all wave components
Data: IFS HRES-WAM analysis, 0.25° resolution

Baseline: IFS HRES-WAM operational forecasts

Aurora 0.25° (1 day lead time) IFS HRES-WAM 0.25° Analysis m.

£
2
2 8
S
2 6
Challenges: E .
' \ RS n
e Adaptation to a new domaln &
' ' . D n
e Data domain is not fixed & ' 2
(e.g., absence of swell, 0
sea ice) : : ' deg.
e How to model wave angles? S W (270°)
2
£
% S (180°)
=
C
5 E (90°)
=
N (0°)

Aurora accurately predicts significant wave height and mean wave direction for
Typhoon Nanmadol, the most intense tropical cyclone in 2022. The red box shows the
location of the typhoon and the number 1is the peak significant wave height.



Fine-tuning task #3: High-resolution weather torecasting

Setup: Model weather variables such as wind speed, temperature, specific humidity, etc.

Data: IFS HRES analysis, 0.1l¢c resolution

Baseline: IFS HRES operational forecasts

Challenges:

e Adaptation to a
new resolution

* Data scarcity

* Data complexity
(~2GB per
datapoint)

Aurora Main Resolution

Aurora Highest Resolution
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Setup: Model weather variables such as wind speed, temperature, specific humidity, etc.

Data: IFS HRES analysis, 0.1lc resolution

Baseline: IFS HRES operational forecasts

11/01 12 UTC 11/01 18 UTC 11/02 00 UTC 11/02 06 UTC Max. 10 m wind speed
. 1

Challenges:

* Adaptation to a
new resolution

e Data scarcity

Aurora

* Data complexity 2
(~2Gb per g
datapoint) P

@ IFS analysis =& GraphCast

| | , s \Wind speed /m s ® IFSHRES -+ Pangu
0 5 10 15 20 25 30 35 ¢ FourCastNet 4 Aurora0.1°

Charlton-Perez et al. (2024) showed that existing AIWP models were not able to capture the spike
in maximum 10 m wind speed that occurs on 00 UTC 2 November 2023. Aurora 1s able to better match
the IFS-HRES forecast of the sudden increase in 10 m wind speed.



Data:

Baselines:

Lead time / days

2023-07-21 UTC 12

On 21 July,
Typhoon Doksuri.
more than 28 billion USD 1in damage.
landfall in the Northern Philippines,

=
1

N
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27.5°N
25°N
22.5°N
20°N
17.5°N
15°N
12.5°N

117.5°E

Fine-tuning task :

North Atlantic & East Pacific

OCD5
HWFI
HMNI

CTClI

NVGI

125°E 130°E

2023-07-21 UTC 18

EMXI

27.5°N
25°N
22.5°N
20°N
17.5°N
15°N
12.5°N

117.5°E

CMCI

)

/]

U

U

Northwest Pacific

U

Tropical hurricane tracks in 2023

[Topical

Aus

U

AEMI -
FSSE -
TVCA -
HCCA -

125°E 130°E

PGTW -

2023-07-22 UTC 00

CWA -

27.5°N
25°N
22.5°N
20°N
17.5°N
15°N
12.5°N

II[SW%
25%

2023 a tropical depression intensified into a tropical storm and was named

c 2
o ©
EEE
o Z=e
o w
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—25% I
1 1 1 1 _50%
g 2 3 3
n £ 2 o
/ ’
—@®— Aurora
—— PGTW
— |BTrACS
\ ]
:-Y)I'&Q
117.5°E 125°E 130°E
inflicting

Doksuri would become the costliest Pacific typhoon to date,

Aurora correctly predicts that Doksuri will make

whereas PGTW predicts that it will pass over Taiwan.

urricane Tracking

Operational forecasts 1ssued by multiple centers worldwide

e First AI model to outperform
multiple operational centers
ln varlous regions.



Glopal medium-range weather forecasting

A breakdown of the success story

- Breakthroughs are obtained due to 3 reasons:

1. Model scale: \Vision Transformers / Swin Transformers have be proven as go-to method
for 2D/3D vision applications): Pangu, Aurora, ...

2. Datascale: ERAS is a publicly available dataset which is easy-accessible and large
enough. Aurora uses a plethora of similar datasets.

3. Tasks / Metrics: MSE on next time step (6 hours ahead). We take a snapshot of the
earth and predict 6 hours into the future. Tasks / metrics is the enabler route!




From weather to reference
modadels for engineering



‘he elevator pitch for scientists

We are facing new unknown ML challenges

Multi-physics
500k particles, 200k mesh cells,
3D, coupled, transient

“%}%&

CFD
1 billion mesh cells, 3D
Non-transient

Data scale

CFD-DEM

L.

KON

Problem scale Model scale

NeuralDEM




Problem scale

We first need to build model frameworks that take the role of ViTs in weather modeling

Universal Physics Transformers: A Framework For
Efficiently Scaling Neural Operators

Benedikt Alkin **  Andreas Fiirst ©  Simon Schmid * Lukas Gruber !
Markus Holzleitner ! Johannes Brandstetter '~

L ELLIS Unit Linz, Institute for Machine Learning, JKU Linz, Austria
2 Emmi AT GmbH, Linz, Austria
* Software Competence Center Hagenberg GmbH, Hagenberg, Austria
* MaLGa Center, Department of Mathematics, University of Genoa, Italy, Austria
{alkin, fuerst, brandstetter}@ml.jku.at

NeuralDEM - Real-time Simulation of
Industrial Particulate Flows

Benedikt Alkin™-*"-*  Tobias Kronlachner’*"* Samuele Papal™'*:"
Stefan Pirker’ Thomas Lichtenegger':*  Johannes Brandstetter™ '

‘Emmi Al GmbH, Linz, Austria
2ELLIS Unit Linz, Institute for Machine Learning, JKU Linz, Austria
3Dcparlmcnl of Particulate Flow Modelling, JKU Linz, Austria
*University of Amsterdam, Amsterdam, Netherlands
"The Netherlands Cancer Institute, Amsterdam, Netherlands

AB-UPT: Scaling Neural CFD Surrogates for High-
Fidelity Automotive Aerodynamics Simulations via Anchored-
Branched Universal Physics Transformers

Benedikt Alkin"™', Maurits Bleeker™', Richard Kurle™', Tobias Kronlachner‘=‘,
Reinhard Sonnleitner', Matthias Dorfer', Johannes Brandstetter '

“Equal contribution 'Emmi AT GmbH 2Ellis Unit, LIT Al Lab, JKU Linz
Correspondence to benedikt@emmi.ai, johannes@emmi.ai

https://github.com/Eumi-AI/AB-UPT
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Multi-branch neural operators

Primary quantities : Secondary quantities

(O
@) b Wi O

l

3 i

v
‘ Physics l
‘ parameters

Approximator A :
PPEOT PIEN

CFD-DEM

Multi-branch Trnsformer

—

N

o ;

O o E O
. O O
' Qo

o) ‘

‘ - E O
0 . . o

' Q

Physics representation Multi-branch neural operator

NeuralDEM




Small problem scale Large problem scale

—1 ) l
~Xample:CFD
- “ . | ‘
High number of simulation mesh cells

Low number of simulation mesh cells | '
: I— o :
° P hyS ICS d Of = Slmu ‘Ot ION Mes h Simple physics phenomena Highly complex physics phenomena

- The fine-grained simulation mesh is needed for numerics, not for ML.
- Quantities such as drag or lift coefficient need full surface resolution.
- Similarly, for many analyses full volume meshes need to be resolved.

- Data is scarce, yet lots of information is within one data sample (physics is the same!)



ultl-brancnh anchor attention

opens lots of new modeling possipilities
X N

Query tokens Anchor tokens

Surface Geometry Volume

Geometry tokens Queries Anchors

Geometry branch

Surface branch Volume branch

Surface prediction Volume prediction

AB-UPT: Scaling Neural CFD Surrogates for High-
Fidelity Automotive Aerodynamics Simulations via Anchored-
Branched Universal Physics Transformers

Benedikt Alkin*!, Maurits Bleeker*!, Richard Kurle*!, Tobias Kronlachner*',
Reinhard Sonnleitner!', Matthias Dorfer', Johannes Brandstetter'?

*Equal contribution '"Emmi AI GmbH ?Ellis Unit, LIT Al Lab, JKU Linz
Correspondence to johannesQemmi.ai




Anchor attention

Encoder block

1e-1 DrivAerML train loss

1.3
Surface positions Volume positions T
Select Select — 1.2
Anchors Anchors L 9.
v [
MLP Supernode Pooling MLP = 1.1 4K h I == e
Transformer = -» 8K - __ °
(O -® 166 @@ W@ __
¢ ¢ < 1.0 o 16K A 'y o
- — -® 32K - ___
-® 65K ::“"0 ----- ®
0.9le sux
4K 16K 65K 262K

Anchors

Transformer

-0 8K o. % -0 ®--——-- ¢
Anchors Anchors -6 16K T
-0 32K .. & --0--—--9
1.3 & eé5K “-.::(__ _____
-@ 131K ‘““I:::::
Transformer Transformer

Linear projection

Surface prediction

Anchors

Transformer

Linear projection

Volume prediction

Surface/volume anchors (inference)

1e-1  DrivAerML test loss

-
U

Test MSE (« )
=
-

4K

16K 65K 262K

Surface/volume anchors (inference)



Model properties

Transolver Transformer AB-UPT (ours) Training resolution = Extrapolation
Surface pressure g Drag coefficient Inference time (1 GPU)
S 0.055 Ct) v :
g o 0.25 ?E)_
(@] ) N
T) oS 0.15 -
wn )
L © ' ()
O
o 0.040 5 0.05 £
o v F 10ms
S 0.00
4K 32K 262K 2M 16M 4K 32K 262K 2M 16M 4K 32K 262K 2M  16M 134M
Volume velocity _ Lift coefficient Inference memory (1 GPU)
O
S qt) 0-06 80 Max memory
o | |
= 0.070 by EB on 1 GPU
N = ~ 60
N = 0.04 >
o 0.065 2 S 40
2 Q c
© C 0.02 .
o 0.060 S = 0
o Q
s 0
4K 32K 262K 2M  16M 134M 4K 32K 262K 2M 16M 4K 32K 262K 2M  16M 134M

Number of cells Number of cells Number of cells



Data scale

Data is the oll in engineering

- There is no ERAL in engineering.
- Engineering simulations are costly, compute-heavy, complicated, ...

- Data comes with different fidelities, which sometimes amount to orders of magnitude in
compute requirements.

- Companies sit on their data.
- ML workflows are widely missing.

« Datais IP.
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Nuclear fusion

5-dim gyrokinetic framework

. Turbulence is a key driver of plasma
confinement degradation, as it causes
olasma to diffuse towards the reactor wall.

- Evolution of particles (ones and electrons)
is described in terms of distribution
function (3D space, 3D velocity space)

- Perpendicular fluctuations scale much
smaller than the system size.

- Experimentally proved to be a good model
for turbulence.

GyroSwin: SD Surrogates for Gyrokinetic
Plasma Turbulence Simulations

Fabian Paischer*'®  Gianluca Galletti*'  William Hornsby’  Paul Setinek’
Lorenzo Zanisi’  Naomi Carey”  Stanislas Pamela’  Johannes Brandstetter'

" ELLIS Unit, Institute for Machine Learning, JKU Linz
2 United Kingdom Atomic Energy Authority, Culham campus
3 EMMI Al Linz
{paischer,galletti,brandstetter}@ml. jku.at

github.com/ml-jku/neural-gyrokinetics




GyrosSwin resul

Table 1: Comparison of diflerent surrogate approaches by capabilities.

Method Average Flux  Diagnostics  Zonal Flows  Turbulence
Tabular Regressors, e.g., GPR, MLL.P 1m-—-an X X X
SOTA Reduced Numerical modelling, e.g., QL 3D—-0D 3D—-1D X X
Neural Surrogates, e.g. GvroSwin (Ours) S5D—0D SD—1D SD—1D 5D—5D

Table 2: Evaluation for 5D turbulence modelling and nonlinear heat flux prediction. We evaluate
all methods across six m-distribution (ID) and five out-of-distribution (QOD) siumulations. For
@ we report RMSE of time-averaged predictions after an autoregressive rollout. For f we report
correlation time for autoregressive rollouts with threshold 7 = (.1. Higher correlation time is belter.

f Q
Method | g 00D (1) D (1) 00D ()
SOTA Reduced Numerical modelling
QL (Bourdelle et al., 2007) iD | n/a n/a 89.53 = 11.76 9522 £ 21.57
Clasyical Rexression Techniques
GPR (Hornshy et al., 2024) oD n/a nfa 43.82 + 10.84 S9.28 + 17.58
MLI' 0D n/a n‘a 50.50 £ 10.79 6198 + 1841
Neural Surrogate Madeis (48 simulations
FNO (Lietal, 2021) iD 033 £0.56 9.20+ 0.58 119.88 + 13.15 124.96 £ 23.27
PointNet (Qi et al,, 2016) 5D 733+£021 740+ 024 11993 £ 13.15 125.05 £ 2329
Transolver (Wu et al., 2024) 5D 083 +1.40 10.80 = 1.46 11993 £ 13.15 125.05 £+ 23.28
ViT {Dosovitskiy et al., 2021) 5D 1683 £ 1.49 19.20 = 1.36 119.63 £ 13.13 12513 £ 23.29
GyroSwin (Ours) 5D 2650+ 355 28.60 = 8.32 67.68 =+ 10.28 7048 £ 1721
Scaling GyrmSwin to 24 ] simulations
GyroSwing,, , (Ours) 5D 98.00 £27.53 76.40 £ 17.60 2372 £ 405 53354 £ 13.10
GyroSwiny o (Ours) D 9417 +21.96 91.20 + I18.61 37.24 + 9.60 4417 + 17.68
GyroSwin {OQurs) D 11033 + 1974 111.80 — 23.86 1835 + 1.56 26.43 + 949




Open challenges

- Multi-fidelity datasets

- Real-world measurements (digital twins)

- Sim to real gap

. Transient simulations / data storage
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