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Computer vision needs more post-pretraining
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Question 1: What losses should I use? 

Question 2: What kind of data? 

Question 3: How can I be efficient in terms of number of adapter parameters? 

 
Post-pretraining 



NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency. 
 
Valentinos Pariza, Mohammadreza Salehi, Gertjan Burghouts, Francesco Locatello, Yuki M. Asano.  
arxiv 2024 
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How semantic are patch representations?

Oquab et al. DINOv2: Learning Robust Visual Features without Supervision. TMLR 2023 
Darcet et al. Vision Transformers Need Registers. ICLR 2024

But often...

Which patch from the whole dataset is the closest?

How it should be

How it is

with SoTA DINOv2-R model

Qualitative results in DINOv2
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Idea of Patch Nearest Neighbor Consistency: intuitive to us
Given a query patch of a right shoulder, top neighbors should be in the following order: 

(1) All Right Shoulder Patches, (2) All Left Shoulder Patches,  (...) (3) Everything Else

1

1

2
2

3

3

Query Patch

Example Patches
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PaNeCo: Patch Nearest neighbor Consistency

NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza,  Salehi, Burghouts, Locatello,  Asano.  arxiv 2024 
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PaNeCo: Patch Nearest neighbor Consistency

NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza,  Salehi, Burghouts, Locatello,  Asano.  arxiv 2024 
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Results
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Evaluation 1: Visual in-context segmentation via dense NN retrieval

Towards In-context Scene Understanding. Ivana Balažević, David Steiner, Nikhil Parthasarathy, Relja Arandjelović, Olivier J. Hénaff. NeurIPS 2023 
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Evaluation 1: Visual in-context segmentation via dense NN retrieval

Towards In-context Scene Understanding. Ivana Balažević, David Steiner, Nikhil Parthasarathy, Relja Arandjelović, Olivier J. Hénaff. NeurIPS 2023 
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In-context scene understanding benchmark

NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza,  Salehi, Burghouts, Locatello,  Asano.  arxiv 2024 
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In-context scene understanding benchmark

matches performances of 
DINOv2-R with ~15x less data

NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza,  Salehi, Burghouts, Locatello,  Asano.  arxiv 2024 
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In-context scene understanding benchmark

NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza,  Salehi, Burghouts, Locatello,  Asano.  arxiv 2024 
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Evaluation #2: Linear Segmentation

Backbone Linear 
Layer

Frozen 
Encoder

Decoder

● Encode Image to patch-level features, 
● Decode with a linear layer the per pixel semantic labels of the image, 
● Supervised training of the linear layer of the decoder for this task.

NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza,  Salehi, Burghouts, Locatello,  Asano.  arxiv 2024 
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Linear segmentation performance

A linear segmentation head is trained on top of the frozen spatial features obtained from different feature extractors. We 
report the mIoU scores achieved on the validation sets of 4 different datasets.

NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza,  Salehi, Burghouts, Locatello,  Asano.  arxiv 2024 
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Eval #3: Fully unsupervised semantic segmentation

Community Detection (CD)

Cluster-based Foreground Extraction (CBFE) 

k-Means Overclustering 

Semantic Segmentation on Pascal VOC for 21 clusters

Other State of the Art Semantic Segmentation 
Performances for 21 clusters as the 21 target 

semantic labels in the dataset.



22

PaNeCo starting with different pretrained weights.

frozen clustering and linear segmentation results on Pascal VOC and COCO-Things.  
 
→ PaNeCo considerably boosts (↑) the performance of different backbones

NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza,  Salehi, Burghouts, Locatello,  Asano.  arxiv 2024 
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Qualitative Results
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Nearest Neighbors of Patches from representations

NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza,  Salehi, Burghouts, Locatello,  Asano.  arxiv 2024 
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Query Retrieved  Nearest Neighbors
PaNeCo rarely confuses semantically close patches

On average such cases appear around 6% of the times from Pascal VOC retrieval cases.

NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza,  Salehi, Burghouts, Locatello,  Asano.  arxiv 2024 
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Key takeaways

• Dense Patch-ordering is loss well suited for post-pretraining
• We can improve upon (very strong) DINO/ DINOv2R models
• Strongest improvements in in-context semantic segmentation and even full-finetuning
• also: code/models now available!

NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza,  Salehi, Burghouts, Locatello,  Asano.  arxiv 2024 



PIN: Positional Insert unlocks object localisation abilities in VLMs.  
Michael Dorkenwald, Nimrod Barazani, Cees G. M. Snoek, and Yuki M Asano.  
CVPR, 2024
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Vision-Language Models are great at many things, but not localisation.

Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.



32

Vision-Language Models are great at many things, but not localisation.

Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.



32

Vision-Language Models are great at many things, but not localisation.

Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.



32

Vision-Language Models are great at many things, but not localisation.

Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.



32

Vision-Language Models are great at many things, but not localisation.

Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.



33

Our solution: unlock localisation abilities in frozen VLMs

VLMs are bad at 
localising and 
cannot handle the 
bbox detection task 

Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.
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Our solution: unlock localisation abilities in frozen VLMs

VLMs are bad at 
localising and 
cannot handle the 
bbox detection task 

But (somewhat noisy) 
localisation does emerge in 
some VLMs

Try to unlock the 
forgotten 
localisation abilities 
in frozen VLMs

Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.
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Our approach

frozen VLM, e.g. Flamingo

Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.
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Our approach

frozen VLM, e.g. Flamingo Positional Insert (PIN) module

Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.
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Our approach

frozen VLM, e.g. Flamingo Positional Insert (PIN) module Synthetic, unlabeled data

Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.
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The data

Zhao et al. X-Paste: Revisiting Scalable Copy-Paste for Instance Segmentation using CLIP and StableDiffusion. ICML 2023
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Example generated data

Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.
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Default Flamingo

Text

Image

Text
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Our method 1: feed the frozen vision encoder synthetic data

Text

Text

Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.
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Our method 2: provide VLM spatial learning capacity 

Text

Text

Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.
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Our method 3: train using pasted obj locations via next-word prediction

Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.
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Results

Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.
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Results

Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.
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We beat common PEFT methods

Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.
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VeRA: Vector-based Random Matrix Adaptation 
Dawid J. Kopiczko, Tijmen Blankevoort, Yuki M. Asano 
ICLR 2024
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Efficient  Adaptation  methods

GPUs, data, $$$

Big Models

Us

7B

1.6M
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We make LoRA more efficient

Low-Rank Adaptation (LoRA) 
 
W' = W + AB,     
                where A,B are low-rank, 
                                         learned per-layer
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We make LoRA more efficient

Low-Rank Adaptation (LoRA) 
 
W' = W + AB,     
                where A,B are low-rank, 
                                         learned per-layer

Vector-based Random Matrix Adaptation (VeRA) 
 
W' = W + AdBb,     
                 where A,B are random & frozen, same across layers;  
                            d,b are learned vectors



47

Random matrices are powerful!

Random Features for Large-Scale Kernel Machines. Rahimi et al. NeurIPS 2007 
Training BatchNorm and Only BatchNorm: On the Expressive Power of Random Features in CNNs. Frankle et al. ICLR 2021 
HyperDreamBooth: HyperNetworks for Fast Personalization of Text-to-Image Models. Ruiz et al. ArXiv 2023



47

Random matrices are powerful!

Random Features for Large-Scale Kernel Machines. Rahimi et al. NeurIPS 2007 
Training BatchNorm and Only BatchNorm: On the Expressive Power of Random Features in CNNs. Frankle et al. ICLR 2021 
HyperDreamBooth: HyperNetworks for Fast Personalization of Text-to-Image Models. Ruiz et al. ArXiv 2023

Turns out: random projection is very good
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LoRA family

• LoRA: https://arxiv.org/abs/2106.09685  
• the OG of parameter-efficient finetuning 

• VeRA: https://arxiv.org/abs/2310.11454    
• 10x more parameter-efficient than LoRA 

• QLoRA https://arxiv.org/abs/2305.14314  
• LoRA on a quantised LLM + tricks 

• LoRA-FA: https://arxiv.org/abs/2308.03303 
• 2x more parameter-efficient than LoRA 

• OFT: https://arxiv.org/abs/2306.07967   
• LoRA but with orthogonal matrices 

• BOFT: https://arxiv.org/abs/2311.06243  
• Upgrade on OFT,  

• LoKr: https://arxiv.org/abs/2103.10385  
• Combines two LoRAs via Kronecker product 

• LoHa: https://arxiv.org/abs/2108.06098  
• Hadamard product of two LoRA updates 

• NOLA: https://arxiv.org/abs/2310.02556  
• Uses learnable Kronecker products of random matrices 

• DyLoRA: https://arxiv.org/abs/2210.07558   
• trains LoRA with any ranks and then picks one 

• KronA: https://arxiv.org/abs/2212.10650   
• adaptation based on Kronecker products 

• Delta-LoRA: https://arxiv.org/abs/2309.02411  
• Incremental updates to the original fully connected layer  

• AdaLoRA: https://arxiv.org/abs/2303.10512 
• adaptively allocates the rank of LoRA during training 

• LoftQ: https://arxiv.org/abs/2310.08659  
• Initialise LoRA to minimise quantisation error of LLM 

• DoRA: https://arxiv.org/abs/2402.09353  
• do the weight-norm trick on LoRA matrix (learn direction) 

• PiSSA 
• start LoRA with SVD 

• LoRA-XS  
• frozen SVD and learnable small matrix inbetween U,V 

https://www.google.com/url?q=https://arxiv.org/abs/2106.09685&sa=D&source=calendar&usd=2&usg=AOvVaw2RERWrl0CNKXcUrasJ9wu4
https://www.google.com/url?q=https://arxiv.org/abs/2310.11454&sa=D&source=calendar&usd=2&usg=AOvVaw3iUQFkwYIJxgrxUBEyhNxe
https://arxiv.org/abs/2305.14314
https://www.google.com/url?q=https://arxiv.org/abs/2308.03303&sa=D&source=calendar&usd=2&usg=AOvVaw37evk8S6Inyedo43NmCk_Z
https://www.google.com/url?q=https://arxiv.org/abs/2306.07967&sa=D&source=calendar&usd=2&usg=AOvVaw0q1ESTzRMjIS6CW4TkRAop
https://arxiv.org/abs/2311.06243
https://arxiv.org/abs/2103.10385
https://arxiv.org/abs/2108.06098
https://arxiv.org/abs/2310.02556
https://www.google.com/url?q=https://arxiv.org/abs/2210.07558&sa=D&source=calendar&usd=2&usg=AOvVaw0jnVaqsUXcuqzLdBSotddY
https://www.google.com/url?q=https://arxiv.org/abs/2212.10650&sa=D&source=calendar&usd=2&usg=AOvVaw2mhp7m06Jryc9l4t79Zfd1
https://www.google.com/url?q=https://arxiv.org/abs/2309.02411&sa=D&source=calendar&usd=2&usg=AOvVaw3ibqoLx5jfxe2BblOSd5xh
https://www.google.com/url?q=https://arxiv.org/abs/2303.10512&sa=D&source=calendar&usd=2&usg=AOvVaw37WwdpyLn7IedXOXtOUGT0
https://arxiv.org/abs/2310.08659
https://arxiv.org/abs/2402.09353
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Results on GLUE with RoBERTa
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Results on E2E benchmark with GPT2
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Instruction tuning: better than LoRA with 100x less parameters
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Results on Image Classification with pretrained ViT
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DoRA: Weight-Decomposed Low-Rank Adaptation

DoRA: Weight-Decomposed Low-Rank Adaptation. Liu et al. 2024 
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks. Salimans & Kingma. NeurIPS 2016
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DoRA: Weight-Decomposed Low-Rank Adaptation

DoRA: Weight-Decomposed Low-Rank Adaptation. Liu et al. 2024 
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks. Salimans & Kingma. NeurIPS 2016

• Adapt the direction, not the magnitude 
• See also weight-norm (2016)
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DoRA: Weight-Decomposed Low-Rank Adaptation

DoRA: Weight-Decomposed Low-Rank Adaptation. Liu et al. 2024 
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks. Salimans & Kingma. NeurIPS 2016

• Adapt the direction, not the magnitude 
• See also weight-norm (2016)

• Combinable with VeRA
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Code: https://github.com/huggingface/peft
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Code: https://github.com/huggingface/peft



No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations 
Walter Simoncini, Spyros Gidaris, Andrei Bursuc, Yuki M. Asano 
NeurIPS 2024



Idea

The loss indicates how the network output should change to solve a task

Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurIPS 2024
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Idea

Gradients carry information 
about the network, task and data 

Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurIPS 2024

Why not use them as features too? 



Idea

Traditionally, vision models are trained with supervision 
Labels are needed to compute gradients 😢

Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurIPS 2024



Idea

Self Supervised Learning to the rescue! 🎉 
No Labels 
Several Proxylosses

Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurIPS 2024
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Given a pre-trained vision transformer we 
Forward an image (or multiple views of it). 
Compute a self-supervised loss & backpropagate. 
Extract the gradients wrt the weights of a layer and downsample them. 
Project gradients and obtain a FUNGI (Feature from UNsupervised GradIents).
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Self-Supervised Objectives

Three objectives: DINO, SimCLR and KL.
We concatenate (multiple) gradients and the model embeddings.
More powerful, as they contain information from multiple objectives.

More robust, as the other features can counteract a bad local gradient approximation
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Code Implementation

https://github.com/WalterSimoncini/fungivision
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Properties

Gradient features can enhance the retrieval performance 
When combined with other gradient features or the embeddings, they improve further 

Gradients encode different and complementary information to each other
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Experiments

We evaluate FUNGI across 20 backbones, 22 datasets and 3 modalities (vision, 
language and audio), for a total of ~1000 experiments. 
We evaluate FUNGI in 

• Retrieval & k-nearest neighbor (k-nn) classification 
• Linear classification 
• k-means clustering
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Retrieval-Based Tasks
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k-nn classification (vision)

Large improvements in k-nn, even for DINO v1/2 and CLIP
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k-nn classification (vision)

Up to 5.3% better for CLIP and 4.8% for DINOv2 few-shot
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k-nn classification (language)

Up to 12.5% better using BERT Base
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k-nn classification (language)

Up to 16% better in few shot classification using BERT Base

Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurIPS 2024



k-nn classification (audio)

Up to 4.2% better using a SSAST backbone
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Visual In-Context Segmentation



In-Context Semantic Segmentation (Hummingbird) on Pascal VOC

Up to 17% improvement over DINOv1
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In-Context Semantic Segmentation on Pascal VOC

Close to SoTA, without any training!
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In-Context Semantic Segmentation [8] on Pascal VOC
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Language

Intent classification on banking-77 with GPT 4o mini 
Examples selected with FUNGI improve accuracy by +2.5%!
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Other Evaluations
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Vision Linear Classification

Our features improve the performance of logistic regression for most backbones
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Summary

Self-supervised gradients can be used as features, and can perform 
better than the embeddings 
Combining gradients (and embeddings) produces strong features 
for retrieval, linear classification and clustering 
FUNGI works across modalities

Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurIPS 2024



There is lots of exciting research to achieve better 
models (efficient, robust, faster) with post-pretraining.



There is lots of exciting research to achieve better 
models (efficient, robust, faster) with post-pretraining.



There is lots of exciting research to achieve better 
models (efficient, robust, faster) with post-pretraining.



There is lots of exciting research to achieve better 
models (efficient, robust, faster) with post-pretraining.



There is lots of exciting research to achieve better 
models (efficient, robust, faster) with post-pretraining.



There is lots of exciting research to achieve better 
models (efficient, robust, faster) with post-pretraining.



There is lots of exciting research to achieve better 
models (efficient, robust, faster) with post-pretraining.



There is lots of exciting research to achieve better 
models (efficient, robust, faster) with post-pretraining.



There is lots of exciting research to achieve better 
models (efficient, robust, faster) with post-pretraining.



There is lots of exciting research to achieve better 
models (efficient, robust, faster) with post-pretraining.



There is lots of exciting research to achieve better 
models (efficient, robust, faster) with post-pretraining.


