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1 Introduction

Ensemble methods are widely used to combine predictions of multiple mod-
els describing the same system. They make a foundation of multiple machine
learning methods like random forests and gradient boosting machines where
multiple weak submodels are combined to create a new, powerful ensemble.
In classical approaches the ensemble remains static - both in terms of the way

the submodels are joined and in terms of parameters of the ensemble model.
This approach works well if we can assume that the internal dynamics of the
modelled system remain constant. While such an assumption can be made in
numerous cases - there are systems of vital importance like financial markets
or health care where it clearly is not true.
The method presented here is designed to alleviate challenges associated with

evolution and lack of stability of the modelled system. It adds a flexible and
dynamic component to the way submodels are combined. It allows not only a
dynamic assignment of weights depending on submodels’ recent performance,
but also update of the parameters of the very ensemble as more observations
are accumulated. In truly Bayesian fashion it further enables us to get rigorous
estimates of predictions’ confidence.

2 Methods

2.1 Model Structure

Our primary assumption is that the optimal way of combining submodels’ pre-
dictions can be based on their past performance. In other words - by keeping
track of submodels’ errors and making use of it - we can decide what share of
votes should be assigned to each of them.
Let ᾱ, β̄ ∈ Rm be the parameters of the model, with associated standard devi-

ations σα, σβ ∈ Rm
>0. It assigns positive weights summing to one for each of the

submodels reflecting their contribution to the final prediction. The assignment
of weights is based on the vector of mean past errors generated by each of the
submodels l ∈ Rm.

w̄ = σ(l ⊙ ᾱ + β̄) (1)

ŷ =

m∑
i=1

wi · ŷi (2)

Where σ denotes softmax function and ⊙ denotes the element-wise
(Hadamard) product.

M 1

M 2

M 3

0.1

0.7

0.2

2.2 Update Rule

Bayes theorem provides a handy way of updating parameters of the model
based on the new observations, while still taking into account our prior beliefs.
In its basic form, it states that probabilities of parameter values given target
(posterior) are proportional to probability of the target given parameters (like-
lihood) multiplied by probability of parameters (prior). In our case it can be
expressed as:

p(ᾱ, β̄|y)
posterior

∝ p(y|ᾱ, β̄)
likelihood

· p(ᾱ, β̄)
prior

(3)

To maximise the probability of parameters we need to optimise for both parts
of the equation - logarithm of likelihood and prior. Likelihood for binary tar-
get is a well known log loss as in 4 and prior with normal assumption can be
expressed as 5, where θ = [α, β] represents the concatenated parameter vector.

logP (ŷ|θ) =
N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) (4)

logP (θ) = −1

2

∑
k

(θk − µk)
2

σ2
k

+ const (5)

Sum of the above losses is minimised using conventional gradient based op-
timisation with every new observation. It has to be noted that it is a quick
process taking only a few epochs due to limited number of parameters and
relative simplicity of the function. In this context the prior distribution can
be thought of as representing a memory of what the model experienced and
the likelihood part may be imagined as representing the immediate experience.
The goal of the process is to find parameters balancing both.

2.3 Data and Submodels

Five distinct submodels were used in ensemble - modified versions of Time
Series Mixer, Deep Coupling and Transformer neural networks. The task was
to predict direction of price change in the next ten hour period. Experiments
were conducted for 59 foreign exchange instruments with sampling frequency
of one hour.

3 Results

We have compared test performance of our ensemble against averaged predic-
tion of all three networks treated as a benchmark. For 43 of 59 (73%) finan-
cial instruments our method provided lower error with mean improvement of
5.4% compared to the benchmark. A binomial test with p = 0.5 shows that
this outcome is statistically significant (p = 1.9 · 10−4), suggesting that the
method provides a measurable improvement over baseline performance. The
effectiveness of the proposed improvement was further confirmed by a Wilcoxon
signed-rank test conducted on paired error, yielding p = 1.3 · 10−5.

4 Conclusion

Bayesian approach to online ensemble learning presented in this work was
demonstrated to yield meaningful improvement in significant number of ex-
amined time series. It confirms our initial intuition and provides an argument
to further pursue elaborations of this concept. Natural next steps include con-
sidering different priors for the model and extension of the model to include
non-linear functions (eq. 1) and dynamics or error change.


