BUILDING FULLY INTERPRETABLE NLG SYSTEM WITH LLMS

Jędrzej Warczyński

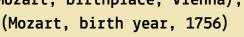
Poznan University of Technology, Poland

Bridging Interpretability and Performance in Data-to-Text Systems

INTRODUCTION

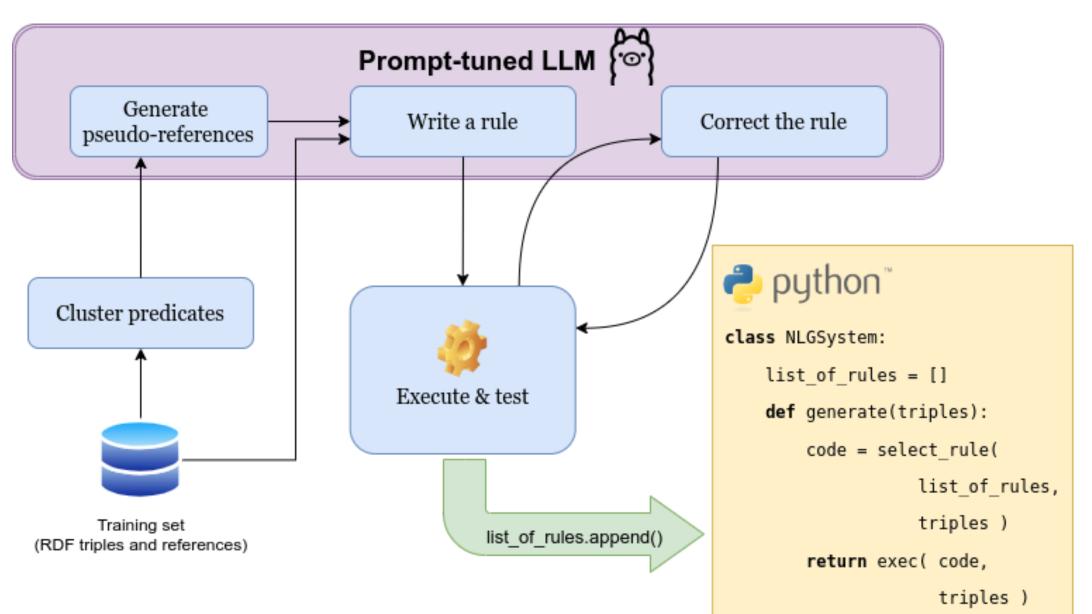
Data-to-text is a field of natural language generation (NLG) that focuses on converting structured, non-linguistic data into coherent text

RDF triples: (Mozart, birthplace, Vienna),



"Mozart was born in 1756 in Vienna."

There are two main approaches to the construction of data-to-text systems: rule-based and neural methods



MOTIVATION

- Interpretability
- Computational performance

TRAINING PROCEDURE

• Processes the training set by asking a large language model to write simple Python code that would generate the reference text based on the input data.

IDEA

- Combining deep neural network & rule-based perspectives on building NLG systems
- Using a large language model to **write** a rule-based system in *pure Python*
- The generated code is executed to check for syntax errors and whether it produces the correct output.
- The final result of the training of the system is a single file of Python code that is able to generate the textualisation for the input data.

RESULTS

- Rule-based approach ranked second in both the BLEU and BLEURT metrics
- Rule-based outperforms the prompt-tuned Llama 3 70B model
- Our approach generates texts on a single CPU 83 times faster than the fastest neural approach (BART) running on a GPU

	BLEU	METEOR	BLEURT	TIME GPU CPU		Interpretability
promp-tuned LLM	38.26	<u>0.680</u>	0.113	1h 46min	n/a	\bigotimes
rule-based (ours)	<u>42.51</u>	0.671	<u>0.157</u>	-	3s	\bigotimes
fine-tuned BART	53.28	0.716	0.257	249s	1910s	\bigotimes

HUMAN EVALUATION

- 5 annotators, 75 test instances, 225 systems outputs
- lowest number of minor hallucinations (typos in named entity names)
- lowest number of disfluencies
- lowest number of repetitions
- significantly fewer major hallucinations (output containing facts not supported by the data) than fine-tuned BART

	min. hal.	maj. hal.	omissions	disfluencies	repetitions
promp-tuned LLM	<u>0.0</u> 8	0.07	0.07	0.19	0.03
rule-based (ours)	0.04	<u>0.013</u>	<u>0.08</u>	0.13	0.03
fine-tuned BART	0.20	0.33	0.19	<u>0.16</u>	0.07

SUMMARY

- Extremely fast
- Fully interpretable
- Similar quality to another approaches
- Does not allow the generation of rules for the unknown, i.e. out-ofdomain predicates ?

