

Unrevealing Hidden Relations Between Latent Space and Image Generations in Diffusion Models

Łukasz Staniszewski¹ Łukasz Kuciński^{2,3,4} Kamil Deja ^{1,2}

¹Warsaw University of Technology ²IDEAS NCBR ³University of Warsaw ⁴Polish Academy of Sciences

#TLDR

- We study relations between Gaussian noises x^T, image samples x⁰ and their latent encodings x^T from the DDIM inversion procedure.
- We show that those encodings $\mathbf{\hat{x}^T}$ manifold is between initial noise $\mathbf{x^T}$ and image generations $\mathbf{x^0}.$
- We show that noise x^T to image x⁰ mapping may be defined using the smallest L2 distance and that DMs learn important image features at the beginning of the fine-tuning.

Where are the latents $\hat{\mathbf{x}}^{\mathrm{T}}$ located?

Latent encodings $(\mathbf{\hat{x}^T})$ manifold is between random Gaussian noises $(\mathbf{x^T})$ and their corresponding samples $(\mathbf{x^0})$ manifolds.

Background

We can inverse the standard diffusion denoising procedure into the noising procedure:

 $x_t = \gamma \cdot x_{t-1} + \eta \cdot \epsilon_{\theta}(x_t, t, c)$

Due to circular dependency on $\epsilon_{\theta}(x_t, t, c)$, DDIM inversion approximates it: $\epsilon_{\theta}(x_t, t, c) \approx \epsilon_{\theta}(\mathbf{x_{t-1}}, t, c).$

Latent \neq Noise

We can observe clear structures of original images \mathbf{x}^0 in the inverted latents $\mathbf{\hat{x}}^T...$

(a) DDPM (ImageNet)

(b) LDM (CelebA)

Diffusion model denoising trajectory is aligned with linear interpolation path between the Gaussian noise \mathbf{x}^{T} and latent encoding $\mathbf{\hat{x}}^{T}$.

Figure 5. Distances between next denoising steps and the $\mathbf{x}^{T} \rightarrow \mathbf{\hat{x}}^{T}$ interpolation points. Intermediate generations along the sampling trajectory initially get closer to the latent variable, and after approximately 50-70% of the path, they pass the latent.

Noise-to-Sample mapping

...or by showing the image difference between the latent $\mathbf{\hat{x}^{T}}$ and the noise $\mathbf{x^{T}}$.

Łukasz Staniszewski

The mapping between initial Gaussian noise \mathbf{x}^{T} and its corresponding generation \mathbf{x}^{0} is secretly a L2-based nearest neighbor mapping.

Τ	ImageNet (DDPM)		CelebA (LDM)	
	$x^0 \to x^T$	$x^T \to x^0$	$x^0 \to x^T$	$x^T \to x^0$
10	$99.4_{\pm 0.0}$	$100_{\pm 0.0}$	$100_{\pm 0.0}$	$100_{\pm 0.0}$
100	$100_{\pm 0.0}$	$59.0_{\pm 7.1}$	$100_{\pm 0.0}$	$100_{\pm 0.0}$
1000	99.8 ± 0.2	$44.6_{\pm 6.3}$	$100_{\pm 0.0}$	$100_{\pm 0.0}$
4000	99.5 ± 0.3	$43.3_{\pm 6.7}$	_	_

Figure 6. We are able to correctly select the original noise (\mathbf{x}^{T}) for a given sample (\mathbf{x}^{0}) by indicating the one with the closest L2 distance (left). Moreover, we show (right) that this mapping is established at the beginning of fine-tuning.

DMs generate the most important image features right at the beginning of fine-tuning, with only small details added further.

Latent encodings $\mathbf{\hat{x}^{T}}$ have correlated pixels.

	DDPM	DDPM	LDM
	(CIFAR-10)	(ImageNet)	(CelebA)
Noise $(\mathbf{x}^{\mathbf{T}})$	0.159 ± 0.003	0.177 =	E 0.007
Latent ($\mathbf{\hat{x}^{T}}$)	0.462 ± 0.009	0.219 ± 0.006	0.179 ± 0.008
Sample (\mathbf{x}^{0})	0.986 ± 0.001	0.966 ± 0.001	0.904 ± 0.005

 Table 1. Top-10 correlation coefficients in random Gaussian noise vs. latent encoding.

If you enjoy this work...

See the full paper for more details!

DDPM (ImageNet)

DDPM (CIFAR-10)

Training steps \rightarrow

371K

445K 495K 545K 595K 645K 700K

lukaszstaniszewski10@gmail.com

arXiv paper

Supported by PL-Grid Infrastructure grant no. PLG/2024/017266.

ML in PL Conference 2024