

Unrevealing Hidden Relations Between Latent Space and Image Generations in Diffusion Models

Łukasz Staniszewski ¹ Łukasz Kuciński 2,3,4 Kamil Deja 1,2

¹Warsaw University of Technology **2IDEAS NCBR** ³University of Warsaw 4Polish Academy of Sciences

#TLDR

- We study relations between **Gaussian noises** \mathbf{x}^T **, image samples** \mathbf{x}^0 **and** their **latent encodings** \hat{x}^T from the DDIM inversion procedure.
- We show that those encodings $\mathbf{\hat{x}^T}$ manifold is between initial noise $\mathbf{x^T}$ and image generations **x 0** .
- We show that noise $\mathbf{x^T}$ to image $\mathbf{x^0}$ mapping may be defined using the smallest *L*2 distance and that DMs learn important image features at the beginning of the fine-tuning.

Where are the latents $\hat{\mathbf{x}}^{\mathrm{T}}$ **located?**

We can inverse the standard diffusion denoising procedure into the noising procedure:

 $x_t = \gamma \cdot x_{t-1} + \eta \cdot \epsilon_\theta(x_t, t, c)$

Due to circular dependency on $\epsilon_{\theta}(x_t, t, c)$, DDIM inversion approximates it: $\epsilon_{\theta}(x_t, t, c) \approx \epsilon_{\theta}(\mathbf{x_{t-1}}, t, c).$

Latent \neq **Noise**

We can observe clear structures of original $\hat{\mathbf{x}}^{\mathrm{T}}$ in the inverted latents $\mathbf{\hat{x}}^{\mathrm{T}}$...

...or by showing the image difference between t he latent $\mathbf{\hat{x}}^{\mathbf{T}}$ and the noise $\mathbf{x}^{\mathbf{T}}$.

Background

Latent encodings ($\hat{\mathbf{x}}^T$) manifold is between random Gaussian noises (\mathbf{x}^T) and their corresponding samples (**x 0**) manifolds.

Diffusion model denoising trajectory is aligned with linear interpolation path between the Gaussian noise $\mathbf{x^T}$ and latent encoding $\mathbf{\hat{x}^T}.$

Figure 5. Distances between next denoising steps and the $x^T\to \hat x^T$ interpolation points. Intermediate generations along the sampling trajectory initially get closer to the latent variable, and after approximately 50-70% of the path, they pass the latent.

The mapping between initial Gaussian noise \mathbf{x}^T and its corresponding generation \mathbf{x}^0 is secretly a *L*2-based nearest neighbor mapping.

Table 1. Top-10 correlation coefficients in random Gaussian noise vs. latent encoding.

If you enjoy this work...

Figure 6. We are able to correctly select the original noise (x^T) for a given sample (x^0) by indicating the one with the closest *L*2 distance (left). Moreover, we show (right) that this mapping is established at the beginning of fine-tuning.

(a) DDPM (ImageNet)

(b) LDM (CelebA)

Noise-to-Sample mapping

DMs generate the most important image features right at the beginning of fine-tuning, with only small details added further.

Latent encodings \hat{x}^T have correlated pixels.

DDPM (ImageNet)

10K 30K 78K 176K 273K 371K 445K 495K 545K 595K 645K 700K

lukaszstaniszewski10@gmail.com Supported by PL-Grid Infrastructure grant no. PLG/2024/017266. ML in PL Conference 2024

DDPM (CIFAR-10)

Training steps \longrightarrow