
Improvement Time ↓ [ms] Relative change
Previous model 0.09 −
Greater num of steps (112) 0.80 +777%
Smaller model (1M) 0.60 -25%
Mixed precision (F16) 0.45 -25%
Bigger batch size (16k) 0.26 -41%

Improvement Time ↓ [ms] Relative change
Previous model 11.80 −
Fewer num of steps (11) 2.60 -78%
Smaller model (77k) 0.62 -76%
Mixed precision (F16) 0.46 -27%
Bigger batch size (8k) 0.37 -18%
Latent space model 0.026 -93%
Bigger batch size (16k) 0.008 -63%

Generative Neural Networks for Fast and Accurate 
Zero Degree Calorimeter Simulation

Maksymilian Wojnar, AGH University of Krakow

Model Time ↓ [ms] Wasserstein ↓ MAE
Original data − 0.53 16.41
FM 0.37 1.27 16.99
Latent FM 0.008 2.11 22.32
VQ-GAN 0.26 2.01 20.33

Figure 1. Schematic diagram of the ALICE 
central barrel detection systems in 2017 [1].
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Figure 2. The ZDC neuron detector [2].

Figure 3. Example ZDC responses generated with 
a Mone Carlo GEANT toolkit.

Table 1. Performance comparison of generative frameworks.

Table 2. Improvements applied to speed up GPT.

Table 3. Improvements applied to speed up FM.
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Figure 4. Comparison of Wasserstein distance and sampling time between this 
work, the previous work, and other methods across various generative models.
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Figure 7. VQ-GAN performance with various sampling techniques.
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Figure 6. VQ-GAN generation procedure.
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Figure 10. FM and latent FM performance 
depending on the number of steps.

4.11.2024, 13:19

Strona 1 z 1about:blank

N G
UNet

P

x N

Figure 8. UNet-based FM design.
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The integration of generative neural networks into 
high-energy physics simulations is rapidly 
transforming the field, offering unprecedented 
efficiency and accuracy. A prominent application is 
the simulation of the Zero Degree Calorimeter 
(ZDC) in the ALICE experiment at CERN (Fig. 1
and 2). Traditionally, these simulations have relied on Monte Carlo methods, which, while highly accurate, are computationally intensive and time-
consuming (Fig. 3). By employing generative networks as surrogate models, we achieve a significant reduction in computational burden while 
maintaining high accuracy. In this work, we utilize the latest advancements in generative neural networks, specifically focusing on flow matching 
(FM) and models based on vector quantization (VQ), to simulate the ZDC neutron detector. These state-of-the-art architectures enable the 
generation of high-fidelity data that closely mirrors real experimental results. We explore and compare the performance of the generative 
frameworks against established simulation methods. Our findings underscore the effectiveness of generative neural networks in providing fast yet 
accurate simulations, making them a valuable tool in the high-energy physics community. This poster is an extension of the work presented in [3].
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where 𝐹!"# is the inverse cumulative distribution function of 
the distribution 𝑞 , 𝑤$	denotes the distribution of the i-th 
channel, 𝑛 refers to the number of evaluated examples and 𝑤%& 
represents the value of the i-th channel of the k-th response.
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The metrics used in this work are defined as:

This study presents a significant advancement in SOTA 
for fast ZDC simulation, with particular improvements in 
sampling speed and fidelity as measured by the 
Wasserstein distance and mean absolute error (MAE), as 
shown in Tab. 1. Our proposed latent FM achieves an 
impressive sampling speed of 0.008 ms per sample, 
outperforming all current models. In terms of fidelity, FM 
closely matches the SOTA Wasserstein score (1.27 vs. 1.2) 
but dramatically reduces generation time from 120 ms to 
0.37 ms. Additionally, we optimize the previous VQ-GAN 
architecture, reducing its Wasserstein score from 4.58 to 
2.11, with a modest increase in generation time. 

Based on our previous work, we implement an 
improved VQ-GAN model [4], addressing limitations 
in the reconstruction ability of the prior model's 
autoencoder. To enhance this capability, we focus 
on the initial training phase (Fig. 5), reducing the 
downsize factor from x8 to x4. Following [5], we 
employ a larger codebook of size 512 with a lower 
vector dimensionality of 8, which decreases the 
model's parameter count (from 1M to 70k) 
compared to [3]. This model leverages an EMA 
codebook update and integrates VQ, MSE, 
perceptual, and adversarial loss terms (details 
provided in the “Flow matching” section), achieving 
a Wasserstein metric score of 3.09.

FM is a family of generative models that facilitate 
the transition from the noise 𝑥' to data 𝑥# through 
a linear interpolation process:

𝑥( = 1 − 𝑡 𝑥' + 𝑡𝑥#,
where 𝑡 ∈ [0, 1] is the interpolation time [6]. The 
neural network, based on a UNet architecture (Fig. 
8), is trained to learn the normalized transition 
velocity:

𝑣) 𝑥( = 𝑥# − 𝑥',
which then can be used to generate samples 
incrementally, applying the Euler method as:

𝑥(*# = 𝑥( + ∆𝑡 3 𝑣) 𝑥( .
The associated loss function is defined as: 

ℒ 𝜃; 𝑥(, 𝑣( = 𝑣) 𝑥( − 𝑣( +.
The network architecture follows the Stable 
Diffusion [7] autoencoder and includes attention, 
enabling conditioning on the input vector. For this 
study, we implement a compact UNet with 77k 
parameters and a linear noise schedule. We apply 
additional improvements to speed  up the model 
(Tab. 3) and we adjust the number of steps (Fig. 10).

To improve speed, we make additional adjustments, 
as the learnable prior (GPT) now generates a 
substantially larger number of tokens. This includes 
using a smaller model, mixed precision training and 
inference, and the biggest possible batch size (Tab. 
2). We apply both temperature and top-k sampling 
in GPT (Fig. 7) and use the same VQ-VAE for 
conditional variables as in [3] for generation (Fig. 6). 

The efficiency of the latent FM model establishes a new 
benchmark in sampling speed. Additionally, the 
compactness of the models further supports this 
efficiency, with the FM and latent FM models containing 
only 77k and 160k parameters, respectively.

The VAE in the latent FM model (Fig. 9), based on 
the [7] architecture with a size of 60k, ensures high 
reconstruction quality and stable training via a loss 
function with gradient normalization wrt. the input:

ℒ 𝜃; 𝑥 =
ℒ,-

|∇.ℒ,-|
+

ℒ/012
|∇.ℒ/012|

+
ℒ345

|∇.ℒ345|
,

where	ℒ,- is the autoencoder loss, combining 𝑙+ 
reconstruction loss and a regularization term, the 
perceptual loss ℒ/012 is based on LPIPS, while the 
adversarial loss ℒ345 employs a pre-trained VGG16 
network with linear feature extraction and hinge 
loss. This VAE achieves a Wasserstein metric score 
of 0.95.
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