We show that in decentralized federated learning, even if you lose an agent, you can still converge to a well-performing model # Adaptive Fill-in: How to Mitigate the Loss of an Agent in Decentralized Federated Learning Ignacy Stępka, Kacper Trębacz, Nicholas Gisolfi, James K. Miller, Artur Dubrawski Carnegie Mellon University, Pittsburgh, PA, USA #### Motivation - Privacy: Data can't be shared directly (e.g., hospitals, regulations) - Solution: Use distributed learning to share models, not data - Objective: Converge to a well-performing model on all agents #### **Problem Setting** - Data distribution: Each agent has access to some unique data - Collaboration: Agents share latest models with their neighbors - Regularization: Agents consider neighbors' models in their loss - Challenge: One agent may be permanently lost during training #### Idea - Use the destroyed agent's model to create its virtual copy - Approximate training data distribution via model-inversion attack - Deploy new virtual agent with created synthetic dataset #### Method • Every agent optimizes the same loss function via GD $$\theta^{t+1} := \theta^t - \eta \nabla_{\theta^t} L(\theta^t; X, Y)$$ After each communication round, agents train their model on local data until it (approx) converges to a local stationary point $$\nabla_{\theta} \mathcal{L}_d(\theta, X, Y) - \epsilon = 0$$ • Create synthetic data points with random labels $$X_{\rm synth} \sim {\rm Uniform}[0,1] \quad Y_{\rm synth} \sim {\rm Uniform}\{0,1,...,C\}$$ • Optimize synthetic data points until the gradient of the loss function w.r.t. parameters is again zero using: $$X_{\mathrm{synth}}^{t+1} := X_{\mathrm{synth}}^t - \eta \nabla_{X_{\mathrm{synth}}^t} L(\theta; X_{\mathrm{synth}}^t, Y_{\mathrm{synth}})$$ Use the new synthetic dataset to train the model of the neighbor and proceed with the distributed optimization process ### Gradient Leakage based attack methods • Implicit Bias Exploitation (IBE) $$\mathcal{L}_{IBE} = \mathcal{L}_d + \lambda \mathcal{L}_{prior}$$ Deep Leakage Gradient (DLG) [5] $\mathcal{L}_{DLG} = \|\nabla W' - \nabla W\|^2 + \lambda \mathcal{L}_{prior}$ • Chefit Private Leakage (CPL) [0] Prior term (optional) $\mathcal{L}_{prior} = \sum_{i=1}^{d} \text{ReLU}(x-1) + \text{ReLU}(-x)$ Gradient from update history $\nabla W = \frac{\theta_t - \theta_{t-1}}{n}$ $\mathcal{L}_{CPL} = \|\nabla W' - \nabla W\|^2 + \lambda_1 \|f(x_{synth}) - \hat{y}\|^2 + \lambda_2 \mathcal{L}_{prior}$ #### Conclusions - Active strategies with virtual agents lead to better results - IBE on average is the best aid for agent loss - DLG and CPL perform worse than IBE, but there is room for improvement in gradient estimation technique - Further investigation into more complex datasets is needed (see additional results on the website) - Theorethical analysis is crucial going forward # References [1] Ovi et al. 2023 "A Comprehensive Study of Gradient Inversion Attacks in Federated Learning and Baseline Defense Strategies" [2] Almeida et al. 2018 "Distributed Jacobi Asynchronous Method for Learning Personal Models" [3] Tsun et al. 2021 "Decentralized Federated Averaging" [3] Tsun et al. 2021 "Decentralized Federated Averaging"[4] Good 2024 "Trustworthy Learning using Uncertain Interpretation of Data" [5] Zhu et al. 2019 "Deep Leakage from Gradients" [6] Wei et al. 2020 "Framework for Evaluating Gradient Leakage Attacks in Federated Learning" ## Results | Iris | | | | | | | | |-----------------------------------|--|---------------------------------|---|---|---|---|---| | | Reference | Drop | Last | Random | IBE | DLG | CPL | | ADPSGD
DFedAvgM
DJAM
FSR | 0.47 ± 0.18
0.98 ± 0.02
0.90 ± 0.09
0.97 ± 0.02 | | 0.36 ± 0.06 0.77 ± 0.12 0.62 ± 0.13 0.96 ± 0.03 | 0.41 ± 0.16 0.81 ± 0.06 0.70 ± 0.10 0.93 ± 0.01 | 0.51 ± 0.22 0.94 ± 0.02 0.94 ± 0.03 0.96 ± 0.01 | 0.40 ± 0.16 0.83 ± 0.11 0.65 ± 0.14 0.97 ± 0.03 | 0.42 ± 0.11 0.83 ± 0.10 0.70 ± 0.08 0.97 ± 0.03 | | Wine | | | 0.90 ± 0.03 | | | | | | | Reference | Drop | Last | Random | IBE | DLG | CPL | | ADPSGD | 0.47 ± 0.13 | 0.43 ± 0.17 | 0.44 ± 0.14 | 0.50 ± 0.15 | 0.54 ± 0.20 | 0.50 ± 0.16 | 0.50 ± 0.16 | | DFedAvgM
DJAM | 0.98 ± 0.01
0.79 ± 0.16 | $0.81 \pm 0.15 \ 0.73 \pm 0.27$ | 0.81 ± 0.15
0.47 ± 0.14 | 0.84 ± 0.05
0.75 ± 0.19 | 0.93 ± 0.03
0.80 ± 0.16 | 0.90 ± 0.07
0.72 ± 0.16 | 0.91 ± 0.06
0.77 ± 0.14 | | FSR | 0.92 ± 0.03 | 0.91 ± 0.11 | 0.87 ± 0.11 | 0.86 ± 0.14 | 0.93 ± 0.04 | 0.80 ± 0.23 | 0.85 ± 0.17 | Global accuracy on a test set after 300 rounds of peer-to-peer communications. Dense communication graph, best results out of 5-fold hyperparameters search on each method and patching strategy and three random seeds.