We show that in decentralized federated learning, even if you lose an agent, you can still converge to a well-performing model

Adaptive Fill-in: How to Mitigate the Loss of an Agent in Decentralized Federated Learning

Ignacy Stępka, Kacper Trębacz, Nicholas Gisolfi, James K. Miller, Artur Dubrawski Carnegie Mellon University, Pittsburgh, PA, USA

Motivation

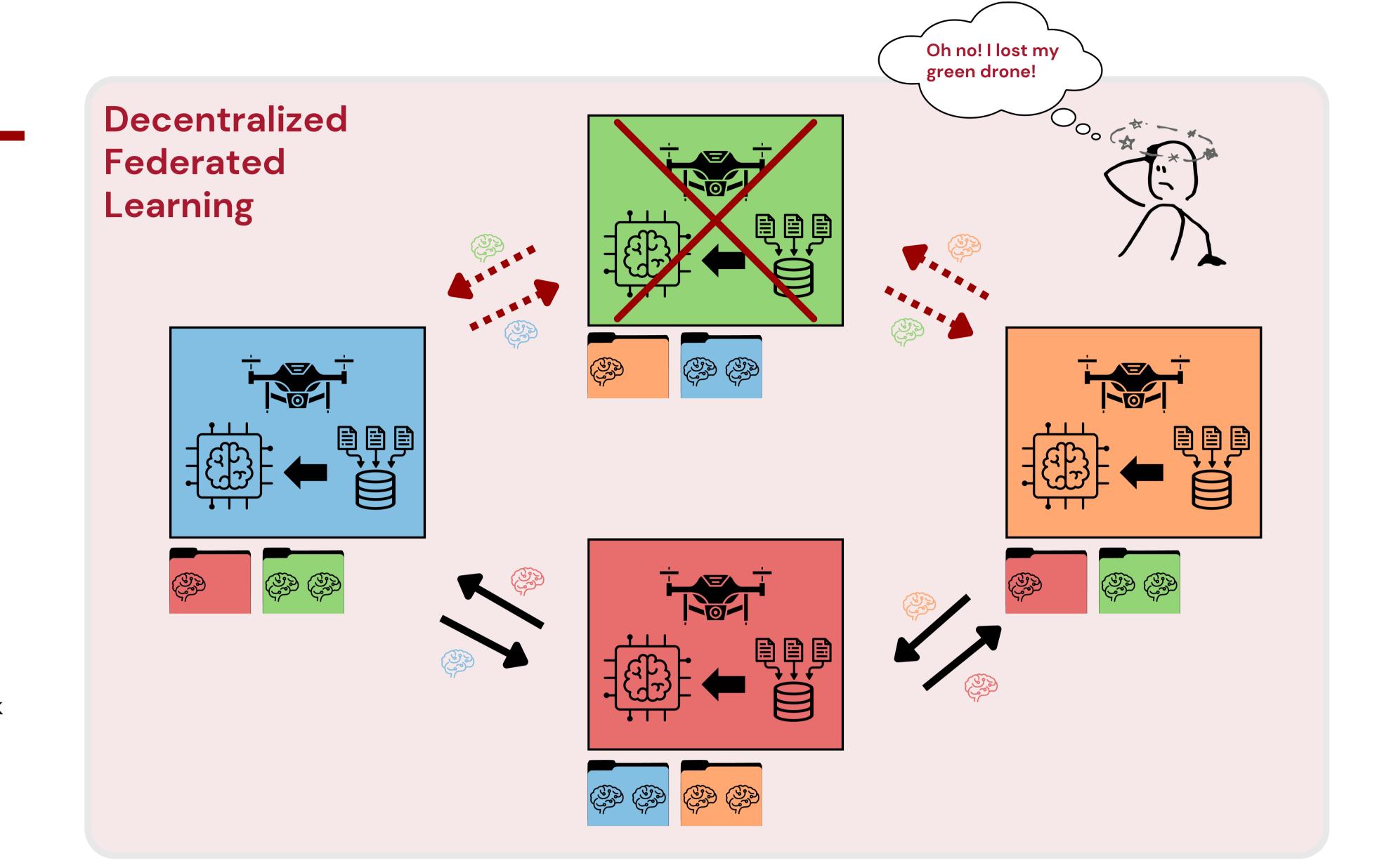
- Privacy: Data can't be shared directly (e.g., hospitals, regulations)
- Solution: Use distributed learning to share models, not data
- Objective: Converge to a well-performing model on all agents

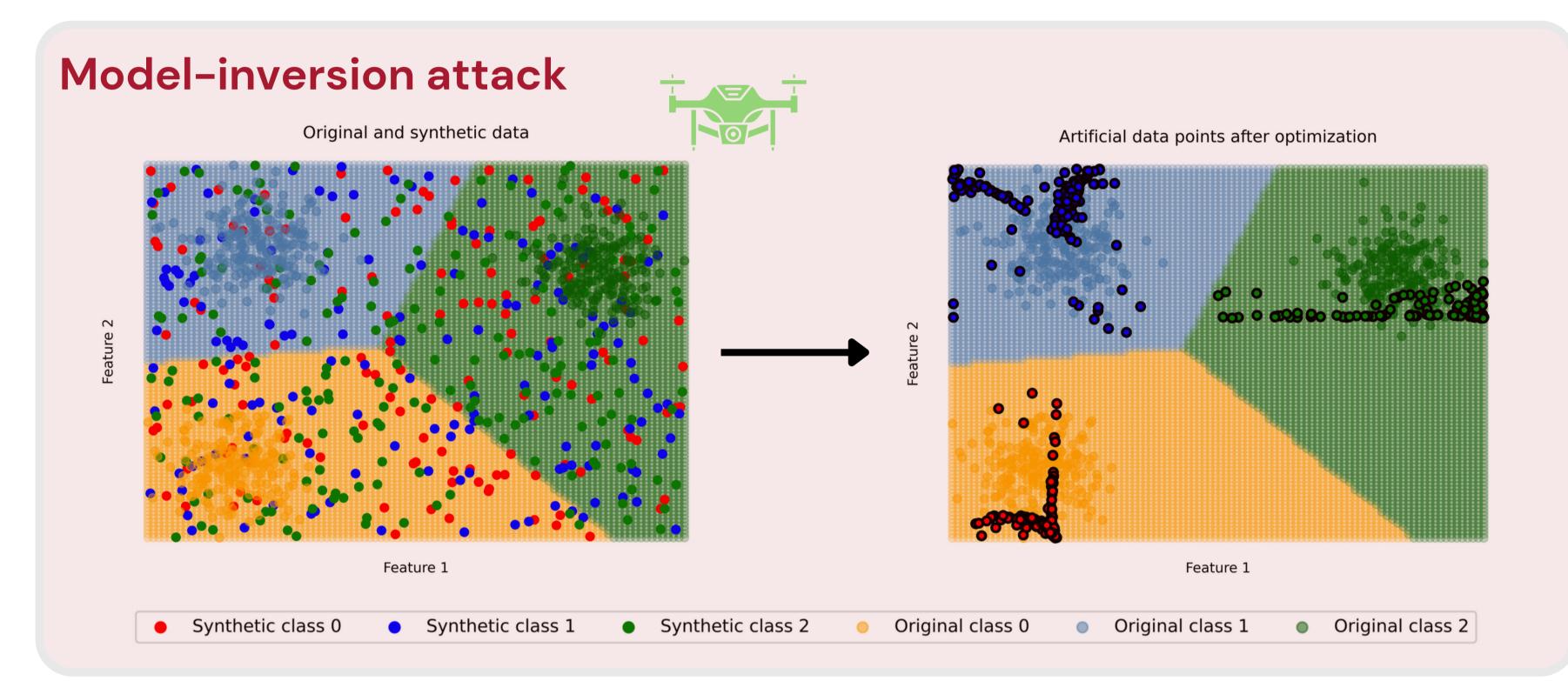
Problem Setting

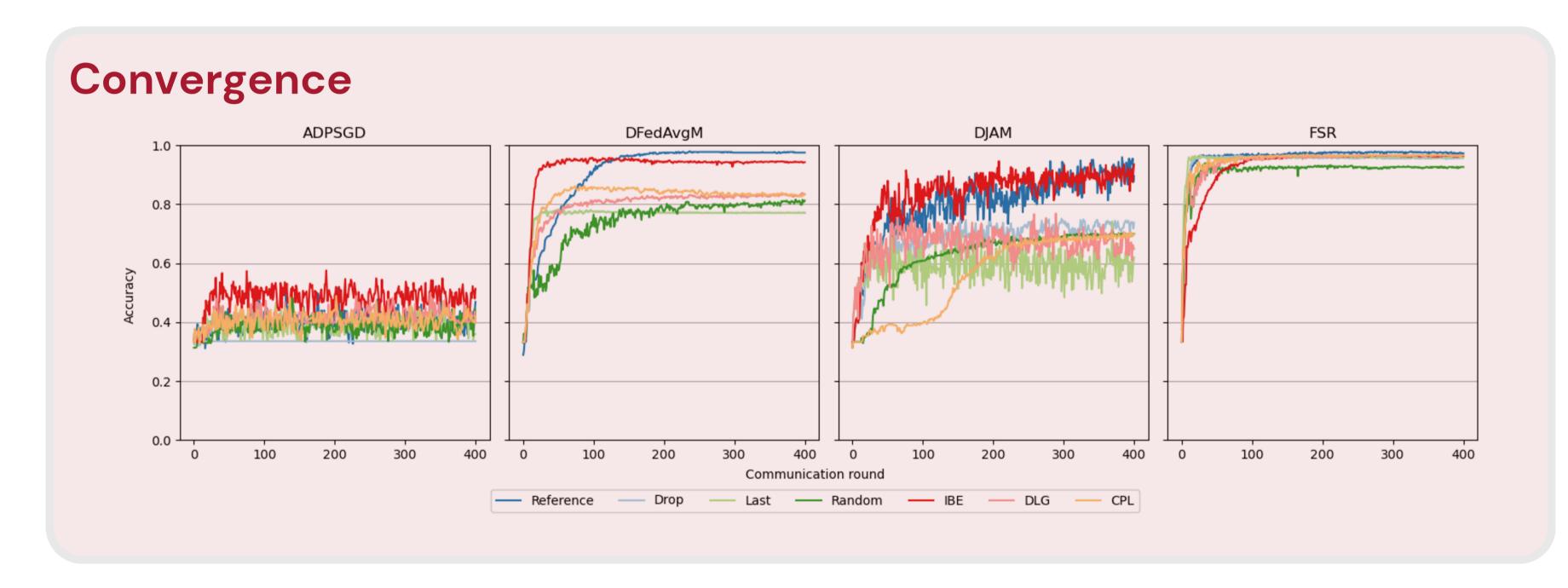
- Data distribution: Each agent has access to some unique data
- Collaboration: Agents share latest models with their neighbors
- Regularization: Agents consider neighbors' models in their loss
- Challenge: One agent may be permanently lost during training

Idea

- Use the destroyed agent's model to create its virtual copy
- Approximate training data distribution via model-inversion attack
- Deploy new virtual agent with created synthetic dataset







Method

• Every agent optimizes the same loss function via GD

$$\theta^{t+1} := \theta^t - \eta \nabla_{\theta^t} L(\theta^t; X, Y)$$

 After each communication round, agents train their model on local data until it (approx) converges to a local stationary point

$$\nabla_{\theta} \mathcal{L}_d(\theta, X, Y) - \epsilon = 0$$

• Create synthetic data points with random labels

$$X_{\rm synth} \sim {\rm Uniform}[0,1] \quad Y_{\rm synth} \sim {\rm Uniform}\{0,1,...,C\}$$

• Optimize synthetic data points until the gradient of the loss function w.r.t. parameters is again zero using:

$$X_{\mathrm{synth}}^{t+1} := X_{\mathrm{synth}}^t - \eta \nabla_{X_{\mathrm{synth}}^t} L(\theta; X_{\mathrm{synth}}^t, Y_{\mathrm{synth}})$$

 Use the new synthetic dataset to train the model of the neighbor and proceed with the distributed optimization process

Gradient Leakage based attack methods

• Implicit Bias Exploitation (IBE)

$$\mathcal{L}_{IBE} = \mathcal{L}_d + \lambda \mathcal{L}_{prior}$$

Deep Leakage Gradient (DLG) [5]

 $\mathcal{L}_{DLG} = \|\nabla W' - \nabla W\|^2 + \lambda \mathcal{L}_{prior}$ • Chefit Private Leakage (CPL) [0]

Prior term (optional) $\mathcal{L}_{prior} = \sum_{i=1}^{d} \text{ReLU}(x-1) + \text{ReLU}(-x)$

Gradient from update history $\nabla W = \frac{\theta_t - \theta_{t-1}}{n}$

 $\mathcal{L}_{CPL} = \|\nabla W' - \nabla W\|^2 + \lambda_1 \|f(x_{synth}) - \hat{y}\|^2 + \lambda_2 \mathcal{L}_{prior}$

Conclusions

- Active strategies with virtual agents lead to better results
- IBE on average is the best aid for agent loss
- DLG and CPL perform worse than IBE, but there is room for improvement in gradient estimation technique
- Further investigation into more complex datasets is needed (see additional results on the website)
- Theorethical analysis is crucial going forward

References

[1] Ovi et al. 2023 "A Comprehensive Study of Gradient Inversion Attacks in Federated Learning and Baseline Defense Strategies"

[2] Almeida et al. 2018 "Distributed Jacobi Asynchronous Method for Learning Personal Models" [3] Tsun et al. 2021 "Decentralized Federated Averaging"

[3] Tsun et al. 2021 "Decentralized Federated Averaging"[4] Good 2024 "Trustworthy Learning using Uncertain Interpretation of Data"

[5] Zhu et al. 2019 "Deep Leakage from Gradients"

[6] Wei et al. 2020 "Framework for Evaluating Gradient Leakage Attacks in Federated Learning"

Results

Iris							
	Reference	Drop	Last	Random	IBE	DLG	CPL
ADPSGD DFedAvgM DJAM FSR	0.47 ± 0.18 0.98 ± 0.02 0.90 ± 0.09 0.97 ± 0.02		0.36 ± 0.06 0.77 ± 0.12 0.62 ± 0.13 0.96 ± 0.03	0.41 ± 0.16 0.81 ± 0.06 0.70 ± 0.10 0.93 ± 0.01	0.51 ± 0.22 0.94 ± 0.02 0.94 ± 0.03 0.96 ± 0.01	0.40 ± 0.16 0.83 ± 0.11 0.65 ± 0.14 0.97 ± 0.03	0.42 ± 0.11 0.83 ± 0.10 0.70 ± 0.08 0.97 ± 0.03
Wine			0.90 ± 0.03				
	Reference	Drop	Last	Random	IBE	DLG	CPL
ADPSGD	0.47 ± 0.13	0.43 ± 0.17	0.44 ± 0.14	0.50 ± 0.15	0.54 ± 0.20	0.50 ± 0.16	0.50 ± 0.16
DFedAvgM DJAM	0.98 ± 0.01 0.79 ± 0.16	$0.81 \pm 0.15 \ 0.73 \pm 0.27$	0.81 ± 0.15 0.47 ± 0.14	0.84 ± 0.05 0.75 ± 0.19	0.93 ± 0.03 0.80 ± 0.16	0.90 ± 0.07 0.72 ± 0.16	0.91 ± 0.06 0.77 ± 0.14
FSR	0.92 ± 0.03	0.91 ± 0.11	0.87 ± 0.11	0.86 ± 0.14	0.93 ± 0.04	0.80 ± 0.23	0.85 ± 0.17

Global accuracy on a test set after 300 rounds of peer-to-peer communications. Dense communication graph, best results out of 5-fold hyperparameters search on each method and patching strategy and three random seeds.