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∗mateusz.piechocki@put.poznan.pl

Problem Statement
With the increasing contribution of solar energy to the overall renewable energy system, accurate solar
irradiance forecasting is crucial for optimizing energy production and managing grid stability. How-
ever, solar irradiance is characterized by high, difficult-to-predict fluctuations related to short-term
meteorological events such as cloud coverage or movements [1]. Traditional forecasting approaches
rely on static and centralized algorithms that often struggle to adapt to local conditions and rapidly
changing atmospheric phenomena. These limitations can lead to less stable and reliable forecasts,
potentially undermining the consistency and efficiency of solar energy systems.

Main Objectives
1. Accurate identification of the current irradiance level.

2. Rapid local adaptation to evolving environmental conditions.

3. Independent and autonomous improvements of forecast accuracy after model deployment.

4. Energy-efficient, low-latency method with near real-time processing on the edge device.

Figure 1: Sky images collected in different locations: (left) Folsom, US; (center) Modena, Italy; (right) Poznań, Poland.
Images are also from various months: (left) February; (center) June; (right) October. Beyond sky observations and dy-
namic atmospheric phenomena, sometimes images may contain distortions, like Sahara dust in Modena’s example.

Methodology
To improve the stability and reliability of irradiance forecasts, we propose an approach based on on-
device continual learning to improve solar irradiance forecasting adaptability after model deployment.
The initial irradiance model was based on ResNet-50 [2] architecture with two fully connected layers
representing the forecasting algorithm head. The baseline model training followed the methodology
outlined in the [3] and was developed on sky images with irradiance values from the Folsom dataset
[4]. This dataset contains 1-min resolution measurements from three consecutive years gathered in
California, US. In turn, the adaptive stage leverages incoming data and compares predicted irradiance
with the ground-truth readings (obtained after 15 minutes) to determine the relevance of the data sam-
ple. Then, depending on the data’s significance, the computed gradients are back-propagated for the
entire model, only for forecaster head layers, or are reset.
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Figure 2: Illustrative diagram of proposed on-device adaptive pipeline.

Results
By utilizing new, relevant data samples our on-device continual learning pipeline can rapidly adjust to
evolving environmental conditions, ensuring that the forecasting model remains accurate and respon-
sive to local atmospheric changes. To confirm our assumptions, we selected two sub-sets, collected in
different locations (Modena and Poznań) and various months (June and October, respectively). Tab. 1
shows achieved metrics, while Fig. 3 presents a visual comparison of the forecasting results of offline
and adaptive methods. The presented results highlight the potential of on-device continual learning

to advance solar irradiance forecasting, providing a scalable and adaptive solution to enhance energy
management and facilitate more effective grid integration in the renewable energy sector.

Table 1: Metric results.

Dataset Method
Metrics

MAE [W/m2] ↓ RMSE [W/m2] ↓

Folsom - 34.895 70.353

Modena
Offline model 78.857 125.340

Proposed 47.185 112.298

Poznań
Offline model 35.340 46.190

Proposed 11.256 28.350
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Figure 3: Visual comparison of irradiance forecasts for measurement stations located in Modena (top) and Poznań (bot-
tom) and readings collected in June and October, respectively. Note the different irradiance ranges on the y-axis.

The proposed adaptive pipeline is intended to operate efficiently on remote resource-constrained hard-
ware. Therefore, the entire processing loop was benchmarked on Raspberry Pi 5 and Jetson Orin
Nano, and performance results, divided into individual processing options, are presented in Tab. 2.

Table 2: Performance results on selected edge devices. Presented times refer to a single data sample processing, consist-
ing of 128× 128 sky image and a vector of 4 historical irradiance values.

Device Avg. inference
time [ms]

Avg. training
time (full) [ms]

Avg. training
time (head) [ms]

Raspberry Pi 5 166.292± 9.193 526.145± 21.263 174.039± 6.737

Jetson Orin Nano 21.634± 0.114 79.515± 15.936 26.192± 0.161

Conclusions
• The developed pipeline improves the deployed model performance, improving intra-hour forecasts.

• Compared to the non-adaptive model, the online approach enhances adaptation to dynamically
changing local weather conditions.

• Measured times demonstrate the feasibility of on-device adaptation, relying only on the available
constrained resources, for edge devices like Raspberry Pi 5 or Jetson Orin Nano.
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