Improving Real-Time Omnidirectional 3D Multi-Person Human Pose Estimation With People Matching and Unsupervised 2D-3D Lifting

Pawel Knap^{1,2}, Peter Hardy¹, Alberto Tamajo¹, Hwasup Lim³, Hansung Kim¹

- 1. University of Southampton, School of Electronics & Computer Science
- 2. University of Freiburg, Institute of Medical Biometry and Statistics (IMBI), Small Data Lab
- 3. Korea Institute of Science and Technology

Human Pose Estimation

- Computer Vision tasks to identify and classify the poses of humans in images or videos.
- Applications in healthcare, entertainment, surveillance, sports, education, and beyond

2D Human Pose Estimation

- Locations of the body joints in 2D space
- Bottom-up, and top-down methods
- Classic approaches OpenPose
 and DeepPose

OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields, Cao et al., 2019 DeepPose: Human Pose Estimation via Deep Neural Networks, Toshev & Szegedy, 2014

3D Human Pose Estimation

- Locations of the body joints in 3D space
- Classic approaches: mmMesh, XNect

Video Frame

Ground Truth

mmMesh

mmMesh: Towards 3D Real-Time Dynamic Human Mesh Construction Using Millimeter-Wave, Xue et al., 2021

XNect: Real-time Multi-Person 3D Motion Capture with a Single RGB Camera, Mehta et al., 2020

Sensors for Human Pose Estimation

- Monocular camera: Cheap, yet with limitations like occlusion and depth ambiguity.
- Set of cameras: Addresses monocular camera limitations but is costly and lacks transferability, restricting applications.
- RADARs: Effective in occlusion handling but produces sparse data.
- LIDARs: High-resolution output, but expensive with scarce data.
- IR-based sensors (Kinect): Faces challenges outdoors.
- Motion Capture Sensor Systems: Limited in applications

Human Pose Estimation – limitations

- Majority of solutions focus on single-person 3D HPE
- Multi-person solutions have limited range and limited occlusion handling capabilities [Mehta 2020, Carraro 2019]

Mehta, Dushyant, et al. "XNect: Real-time multi-person 3D motion capture with a single RGB camera", 2020 Carraro, M. Munaro et al. "Real-time marker-less multi-person 3d pose estimation in rgb-depth camera networks", 2019

Contributions

- Cheap and robust real-time multi-person 3D pose estimation
- Omnidirectional real-time HPE systems for realworld localization – applications in robotics
- New design for systems using blend of sensors

System Overview

Keypoints detection

- Openpose for 2D keypoints detection
- It uses Part Affinity Fields
- Handle multiple-people
- No tracking. Detection happens in each frame

Z. Cao etal. "Openpose: Realtime multi-person 2d pose estimation using part affinity fields", 2019.

People counting algorithm

• People localisation done with people tracking algorithm from Texas Instruments (Garcia 2019)

Keegan Garcia, Bringing intelligent autonomy to fine motion detection and people counting with TI mmWave sensors, 2019

People counting algorithm

People Tracking and Counting Reference Design Using mmWave Radar Sensor – Texas Instruments

Matching

- Binary search tree
- Based on disparity between the average image x coordinate, and the radars coordinates transformed into the image coordinate space through a learned transform
- Transform based on Oh et al. learned by Levenberg–Marquardt algorithm
- Radar data used to move poses to correct position in 3D space

Input image

Reconstructed poses

J. Oh, K.-S. Kim, M. Park, and S. Kim, "A comparative study on cameraradar calibration methods", 2018

Overview of the lifting algorithm

Pose Detected	Front Cameras	Rear Cameras	Avg.
Full 2D Pose	54.8%	35.5%	45.1%
Partial 2D Pose	92.4%	84.8%	88.6%

Overview of the lifting algorithm

Qualitative Results of lifting algorithm

Right Arm Occluded

Left Arm Occluded

Right Leg Occluded

Left Leg Occluded

Pose reconstruction errors on the Human3.6M

- The Procrustes aligned mean per-joint position error (PA-MPJPE)
- Normalized mean per joint position error (N-MPJPE)
- The smaller, the better for both

Method	Occlusion	PA-MPJPE	N-MPJPE
LInKs [2]	None	33.8	61.6
Ours (Recreation)	None	37.2	61.7
Ours (Recreation)	Left Arm	52.1	78.1
Ours (Recreation)	Left Leg	46.0	73.2
Ours (Recreation)	Right Arm	49.8	75.7
Ours (Recreation)	Right Leg	44.5	71.6
Ours (Recreation)	Left Arm & Leg	62.0	86.0
Ours (Recreation)	Right Arm & Leg	60.2	83.7
Ours (Recreation)	Both Legs	69.3	99.8
Ours (Recreation)	Torso	88.4	122.0

Matching algorithm results

TABLE II

	Radar 1 ↓	Radar 2 \downarrow	Radar 3↓
Preliminary Work [3] Ours	$\begin{array}{c} 23.89\% \pm 6.57\% \\ 2.52\% \pm 2.51 \end{array}$	$33.57\% \pm 50.55$ $9.44\% \pm 13.27$	$\begin{array}{c} 66.89\% \pm 263.89 \\ 1.94\% \pm 1.52 \end{array}$

- Low average matching error of 4.63%
- Error represents the absolute difference between the radar and camera matching values of an individual, divided by the camera values

Radar detection errors

- Localisation error in meters.
- The errors were evaluated in each radar's x[^] (left) and z[^] (right) directions.
- The figures represent these errors in the (X^{2} , Z^{2}) 2D global coordinate system.

Qualitative system's results

https://youtu.be/FAFVYWSzu7Q

Conclusions

- Robust detection system
- Performs consistently regardless of the number of individuals.
- Theoretically can handle any number of detected people.
- Another limitation is the system's inability to accurately detect when a person is facing away from it.

[1] Z. Cao etal. "Openpose: Realtime multi-person 2d pose estimation using part affinity fields", 2019.

[2] Peter Hardy and Hansung Kim. "LInKs - Lifting Independent Keypoints - Partial Pose Lifting for Occlusion Handling with Improved Accuracy In 2D-3D Human Pose Estimation", 2023.

[3] Aarti Amin et al. "Real-time 3d multi-person pose estimation using an omnidirectional camera and mmwave radars", 2023

