Accumulated Local Effects and Graph Neural Networks

Paulina Kaczyńska

Faculty of MIM, University of Warsaw IPPT PAN, Polish Academy of Sciences

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Accumulated Local Effects for GNNs in Link Prediction

Objective:

Investigate the use of Accumulated Local Effects (ALE) (Apley and Zhou, 2020) for explaining Graph Neural Networks (GNNs) trained for link prediction tasks.

Why is it important? ALE visualizes the impact of the feature's value on the prediction. Most GNN explainability methods can be classified as "feature importance" methods: they highlight how important is the given feature, but not what is the impact of the given value.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Why is ALE Different for GNNs?

During ALE calculation, we modify certain nodes to check how prediction changes.

Tabular Data:

- Data points are independent
- We can modify multiple points simultaneously

Graph Neural Networks:

- GNN layers update node embeddings with information from neighbors passed through edges (message passing)
- Key Challenge: Simultaneous node modifications during ALE can interfere with GNN predictions

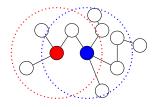


Figure: Interaction between modified nodes in two-layer GNN

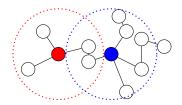


Figure: No interaction between modified nodes

Research Question

Two Approaches to ALE for GNNs:

- Exact (Safe): Modify one node at a time
 - $\rightarrow\,$ Accurate but computationally expensive
- > Approximate (Fast): Modify multiple nodes simultaneously
 - ightarrow Faster but may interfere with message passing

Research Question:

Can we treat GNNs like tabular data without significant loss of explanation quality?

Accumulated Local Effects

$$g_{S,ALE}(x_S) \equiv \int_{x_{\min,S}}^{x_S} \mathbb{E}\left[\frac{\partial f(x_S, X_C)}{\partial x_S} \middle| x_S = z_S\right] dz_S \qquad (1)$$

Estimation

$$\hat{g}_{S}(x_{S}) \equiv \sum_{h} \frac{1}{n_{S}(h)} \sum_{\{i:x_{i,S} \in N_{S}(h)\}} [f(z_{h,S}, x_{C}) - f(z_{h-1,S}, x_{C})] \quad (2)$$

Additional parameters used while using only a subset of nodes in link prediction tasks:

- parameter max_bin_size how many nodes are modified at once?
- parameter k how many nodes do we check for a probability of a link with a modified node?

Two algorithms

Return ALE;

Input: Model *M*, Dataset D, Feature index *f*, Number of bins *N* **Output:** Accumulated Local Effects (ALE) values

Algorithm 1: ALE Exact Ver-		
sion	_ Algorithm 2: ALE Approxi-	
Initialize empty list ALE ; Divide feature values into N bins; for each bin b_i do Get nodes in bin b_i ; for each node n_j in b_i do Set feature f of n_j to lower bin edge; Compute prediction P_{low} ; Set feature f of n_j to upper bin edge; Compute prediction P_{high} ; Compute prediction P_{high} ; Compute difference $D = P_{high} - P_{low}$; Store D ; Compute average difference for bin b_i and update ALE ;	mate VersionInitialize empty list ALE ;Divide feature values into N bins;for each bin b; doGet nodes in bin b;Set feature f of all nodes in b;to lower bin edge;Compute prediction P_{low} ;Set feature f of all nodes in b;to upper bin edge;Compute prediction P_{high} ;Compute average difference $D = P_{high} - P_{low}$;Update ALE with D;Return ALE ;	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Dataset 1: AI Research Citations

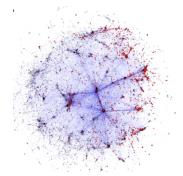
Network Structure

- Nodes: 159,734 Al research papers from the S2ORC corpus
- **Edges:** 227,565 citations
- Node features: Number of authors, affiliation details, words from the abstract

Research Focus

Question: Do Big Tech affiliations influence citation patterns?

- Explained Variable: Fraction of authors affiliated with Big Techs.
- Target: Likelihood of citation



Citation patterns between industry and academia

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Dataset 2: Mouse Brain Vasculature

3D Vessel Network

- Nodes: 1.66M vessel points
- **Edges:** 2.15M connections
- Node Features: Cartesian coordinates of nodes, border flag and brain region classification.

Analysis Goal

Question: How does vessel connectivity change with brain height?

- **Key Feature:** Z-coordinate (height)
- Target: Connection probability

Models

- Link prediction task
- Two 256-dimensional layers
 - Graph Convolutional Network
 - Graph Attention Network

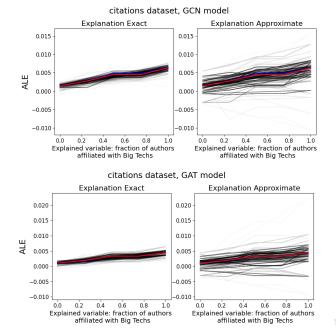
Citations dataset trained on CPU, CD1-E_no2 on GPU

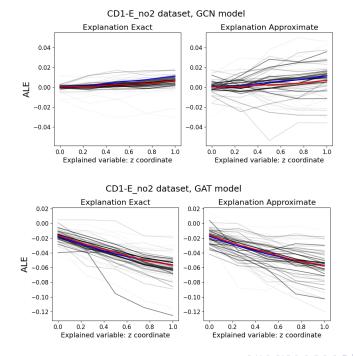
	Model	Layers	Layer Dim.	Epochs	F1 Score	AUC ROC
Туре	Dataset	(count)	(units)	(count)	(test/val)	(test)
GAT	Citations	2	256	15	0.683	0.635
GCN	Citations	2	256	15	0.703	0.759
GAT	CD1-E_no2	2	256	50	0.741	-
GCN	CD1-E_no2	2	256	50	0.833	-

Table: Architectural details and metrics of the models for Citations and CD1-E_no2 datasets.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

ALE profiles





Statistical Comparison of ALE Curves

χ^2 Test:

Null Hypothesis: Approximate and Exact ALE profiles are sampled from the same distribution.

Rejection threshold: $\chi^2 > 11.07$

Dataset	GCN	GAT
Citations	7.165	5.413
CD1-E_no2	17.439	1.296

Conclusion:

Significant difference for GCN on CD1-E_no2 dataset.

Permutation Test:

Null Hypothesis: Approximate and Exact ALE profiles are sampled from the same distribution.

n = 10,000 random splits. Significance level: $\alpha = 0.05$

Dataset	GCN	GAT
Citations	0.407	0.898
CD1-E_no2	0.195	0.155

Conclusion:

No significant differences found.

- ロ ト - 4 回 ト - 4 □

Permutation test results

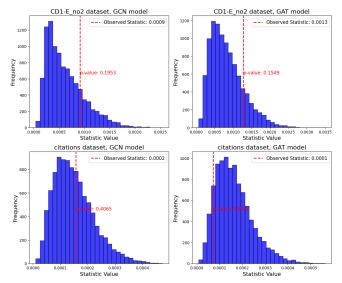
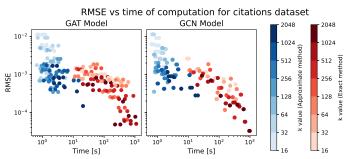
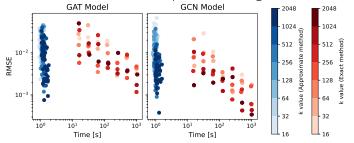


Figure: Histogram of different permutation's test statistic's value

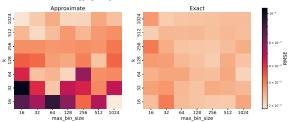
Accuracy and time



RMSE vs time of computation for CD1-E no2 dataset

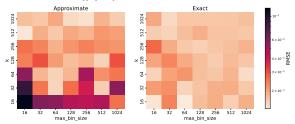


Comparison of RMSE for GCN and GAT Models



RMSE from aggregated goldstandard - citations dataset, GCN model

RMSE from aggregated goldstandard - citations dataset, GAT model



Key Findings: ALE for Graph Neural Networks

Accuracy vs. Efficiency Trade-off

 Approximate ALE closely matches exact method, while being considerably faster

But shows higher variance across runs

Performance Factors

Exact Method:

- More modified nodes \rightarrow Better estimation
- Significantly slower computation

Approximate Method:

- More analyzed neighbors \rightarrow Better results
- Balances speed and accuracy

Conclusions

Key Takeaway

Approximate ALE offers a practical approach for explaining GNNs, with manageable accuracy trade-offs for significant speed gains

Future directions

- Averaging multiple ALE profiles obtained with the approximate method seems to produce a profile that is very close to the one obtained with the exact method. Maybe a method combining the two would produce the best results?
- How does it generalize to deeper networks, other tasks like node classification, denser datasets?