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Time Series Foundation Models

Most influential foundational models published, ordered from bottom top in chronological order and with 
the AutonLab branch to the right.

First Open Source, Multi-task Time 
Series Foundation Model
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Goswami, M., Szafer, K.*, Choudhry, A.*, Cai, Y., Li, S., & Dubrawski, A. (2024). MOMENT: A Family of Open Time-series Foundation Models. In 
International Conference on Machine Learning. PMLR.
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Goswami, M., Szafer, K.*, Choudhry, A.*, Cai, Y., Li, S., & Dubrawski, A. (2024). MOMENT: A Family of Open Time-series Foundation Models. In 
International Conference on Machine Learning. PMLR.

1. Pre-trained on reconstruction task

2. T5 Transformer Encoder

3. Multi-task capabilities
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Our work
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Representations and Interventions 
in  Time Series Foundation Models

Similarity Analysis Linear Concept Analysis

Similarity-guided 
pruning

Inference-time interventions
with steering vectors

Contributions:
● Efficiency
● Contextualized prediction
● Influencing model without fine tuning
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Similarity Analysis
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Kornblith, S., Norouzi, M., Lee, H., & Hinton, G. Similarity of Neural Network Representations 
Revisited. In International Conference on Machine Learning (pp. 3519-3529). PMLR. 

T. Nguyen, M. Raghu, and S. Kornblith, “Do Wide and Deep Networks Learn the Same Things? 
Uncovering How Neural Network Representations Vary with Width and Depth,” in International 
Conference on Learning Representations, 2021.

Intuition:
Centered Kernel Alignment (CKA) calculates the 
similarity between two sets of features by 
centering them to remove mean biases, computing 
the alignment through dot products of their 
transposed and original matrices, normalizing these 
similarities by their self-alignments to ensure scale 
invariance, and thus measures how similarly the 
features represent the underlying data patterns.
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Similarity Analysis
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Similarity Analysis
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Similarity-Guided Pruning
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Linear Concept Analysis
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Marks, Samuel, and Max Tegmark. "The Geometry of Truth: Emergent linear 
structure in large language model representations of true/false datasets." arXiv 
preprint arXiv:2310.06824 (2023).

1. LLMs exhibit emergence of linear 
separability of certain concepts with 
scale (e.g. truthfulness)

2. We hypothesized that the same 
phenomenon occurs in TSFMs
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Linear Concept Analysis
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Steering Vectors
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Templeton, et al., "Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet", 
Transformer Circuits Thread, 2024.

Knowing that a certain concept is linearly represented 
we can safely say that there is a single direction in 
residual stream representing this concept.
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Steering Vectors - latent space
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Steering Vectors - output space
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Steering Vectors - intervention method
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Summary
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1. TSFMs learn interesting representations

2. TSFMs may be a bit inefficient in exploiting their 
representational capacity (don’t worry, LLMs too) 🌶

3. We can exploit knowledge about model’s internal 
representations to improve/influence its performance


