

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

AGH University of Krakow

Towards Sustainable Cloud Environments by Leveraging Time Series Forecasting for Enhanced Resource Utilization

Mateusz Smendowski

AGH

< □ ▶

Cloud Computing in a Nutshell

on-demand – *pay-as-you-go* – scalable – flexible

90% of IT enterprises will shift to cloud solutions shortly. In 2020, data centers consumed **200 TWh** of energy.

While clouds are essential, they also entail inherent risks.

2/22

Pessimistic resource allocation

Costly on-demand resources

Regional resource shortages

Limited strategic foresight

energy inefficiency resource wastage escalated costs SLAs violations low QoS & QoE

GCC – Green Cloud Computing

Sustainable Cloud Environments

FinOps – Financial Operations

What? – Objective

Towards Sustainable Cloud Environments

How? – Method

by Leveraging Time Series Forecasting

Why? – Motivation

for Enhanced Resource Utilization

< □

э

What? – Objective

Towards Sustainable Cloud Environments

T.

How? – Method

by Leveraging Time Series Forecasting Why? - Motivation

for Enhanced Resource Utilization

< □ ▶

э

Process multivariate historical resource consumption metrics from real-life production cloud environment – CPU, RAM, Disk, Network.

- variable length and dimensionality in time series -

Train long-term time series forecasting model(s). - Gated Recurrent Unit (GRU) Neural Network(s) -

Forecast CPU and RAM usage with a weekly horizon for each of the 8 virtual machines.

Create weekly resource reservation plans based on predicted demand and adjust resources accordingly.

High-level Resource Usage Optimization Scheme

High-level Resource Usage Optimization Scheme Loop

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ・ つへで

Genera	I Purpose
Virtual	Machines

High-Performance Computing Virtual Machines

< □ ▶

Cloud environments are evolving rapidly and dynamically.

Optimization solutions themselves should be scalable and cost-effective.

GFM Global Forecasting Model

GSFM

Group-specific Forecasting Model

LFM

Local Forecasting Model

クへで 10/22

≣⊁ ≣

< □ ▶

Relations between resource usage metrics, even within the same virtual machine, **are not obvious** – based on an 8-month training set.

11/22

GFM	1 1	GSFM	 	LFM
Global Forecasting Model		Group-specific Forecasting Model	 	Local Forecasting Model

Similarity-based Time Series Grouping (STG) – use a recurrent autoencoder for semantic representation of weekly time series sequences, apply K-means clustering with the DTW distance, and group time series based on majority membership of embedded sequences to distinguished clusters.

VM03 - RAM reconstruction

Resource	AE 1	AE 1	AE 2	AE 2	VAE 1	VAE 1		VAE 2
		-AD		-AD		-AD	VAL 2	-AD
CPU	0.150	0.130	0.144	0.126	0.135	0.130	0.135	0.129
RAM	0.180	0.165	0.179	0.164	0.172	0.178	0.170	0.175
Disk	0.168	0.147	0.183	0.142	0.184	0.169	0.183	0.159
Network	0.130	0.118	0.120	0.117	0.127	0.121	0.122	0.124

Based on 1st level metric - RMSE, AE 2-AD is superior to VAE 2-AD.

No of	Silhouette	Davies-Bouldin	Calinski-Harabasz	Global	Global Gini	No of idle	No of time series
clusters	score	index	index	purity	index	global clusters	per global cluster
2	0.542	0.746	11,490	0.788	0.063	0	18; 14
3	0.561	0.578	17,847	0.739	0.313	0	15; 16; 1
4	0.557	0.542	22,597	0.629	0.281	0	8; 12; 1; 11
5	0.568	0.509	28,546	0.599	0.338	0	9; 6; 1; 12; 4
6	0.572	0.489	34,813	0.544	0.396	0	10; 9; 2; 9; 1; 1
7	0.556	0.495	41,869	0.491	0.402	0	9; 9; 1; 5; 1; 1; 6

Cluster assessment metrics using **AE 2-AD** as the sequence embedding model.

Cluster assessment metrics using VAE 2-AD as the sequence embedding model.

No of	Silhouette	Davies-Bouldin	Calinski-Harabasz	Global	Global Gini	No of idle	No of time series
clusters	score	index	index	purity	index	global clusters	per global cluster
2	0.548	0.541	14,604	0.782	0.343	0	27; 5
3	0.524	0.544	22,873	0.670	0.208	0	8; 7; 17
4	0.545	0.528	31,881	0.629	0.188	0	9; 5; 12; 6
5	0.498	0.562	32,744	0.564	0.250	1	3; 5; 12; 7; 5
6	0.481	0.585	38,416	0.487	0.292	1	3; 5; 12; 5; 5; 2
7	0.473	0.600	40,632	0.450	0.303	2	4; 5; 11; 4; 4; 3; 1

Clustering post AE 2-AD

Clustering post VAE 2-AD

Based on 2nd level metrics, VAE 2-AD is superior to AE 2-AD.

VM07 - CPU sequences projection

CPU Membership

Assigning time series to a group is **ambiguous** when STG is performed on both the training (8 months) and validation (1 month) sets.

VM07 - CPU sequences projection

CPU Membership

Assigning time series to a group is **unambiguous** when STG is performed on the validation set only – earliest available resource usage metrics for analysis.

RMSE

FR

Aggregated evaluation metrics for predictions on test (3 months) set.

Reference type	Percentage cost reduction (with GSFM)	Daily USD cost (without GSFM)	Daily USD cost (with GSFM)	Percentage CPU usage (with GSFM)	Percentage RAM usage (with GSFM)	Scaling events	Violation events	Percentage availability
e2-std-2	0.00	2.07	2.07	17.69	22.13	0.00	0.00	100.00
e2-std-4	39.40	4.14	2.51	35.39	38.17	0.63	0.13	99.81
e2-std-8	48.24	8.29	4.29	48.88	44.40	1.13	0.63	99.04
e2-std-16	50.74	16.58	8.17	55.41	56.86	2.25	2.00	96.93
e2-std-32	57.58	33.15	14.06	60.60	57.52	2.25	2.13	96.75

Initial resource reservation plans – aggregated domain-specific metrics.

Initial Plan \rightarrow Administrative Rules \rightarrow Adjusted Plan

Recommend a more robust machine type within the e2-std flavor hierarchy if the forecasted demand surpasses 80% of the initially suggested machine's computational capacity.

Adjusted resource reservation plans – aggregated domain-specific metrics.

Reference type	Percentage cost reduction (with GSFM)	Daily USD cost (without GSFM)	Daily USD cost (with GSFM)	Percentage CPU usage (with GSFM)	Percentage RAM usage (with GSFM)	Scaling events	Violation events	Percentage availability
e2-std-2	0.00	2.07	2.07	17.69	22.13	0.00	0.00	100.00
e2-std-4	20.87	4.14	3.28	29.52	36.42	0.75	0.00	100.00
e2-std-8	34.02	8.29	5.47	35.33	40.23	1.50	0.00	100.00
e2-std-16	36.98	16.58	10.45	35.06	41.12	4.75	0.25	99.62
e2-std-32	44.71	33.15	18.33	36.07	39.75	4.75	0.25	99.62

Optimization Towards Sustainable Cloud Environments is indeed a trade-off.

20 / 22

References:

• M.Smendowski, P.Nawrocki;

Optimizing multi-time series forecasting for enhanced cloud resource utilization based on machine learning;

Knowledge-Based Systems, 2024;

DOI: https://doi.org/10.1016/j.knosys.2024.112489

• P.Nawrocki, M.Smendowski;

FinOps-driven optimization of cloud resource usage for high-performance computing using machine learning; Journal of Computational Science, 2024; DOI: https://doi.org/10.1016/j.jocs.2024.102292

Thank you for your attention.

€

.∋ .

< □ ▶ < /□ ▶

- 4 ⊒ ▶

